Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Structure Inclination Angles in the Convective Atmospheric Surface Layer
    Chauhan, K ; Hutchins, N ; Monty, J ; Marusic, I (SPRINGER, 2013-04)
  • Item
    Thumbnail Image
    Towards Reconciling the Large-Scale Structure of Turbulent Boundary Layers in the Atmosphere and Laboratory
    Hutchins, N ; Chauhan, K ; Marusic, I ; Monty, J ; Klewicki, J (SPRINGER, 2012-11)
  • Item
    Thumbnail Image
    Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires
    Philip, J ; Hutchins, N ; Monty, JP ; Marusic, I (IOP Publishing Ltd, 2013-11)
  • Item
    Thumbnail Image
    Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ν- and x-probes
    Philip, J ; Baidya, R ; Hutchins, N ; Monty, JP ; Marusic, I (IOP PUBLISHING LTD, 2013-11)
  • Item
    Thumbnail Image
    The turbulent/non-turbulent interface and entrainment in a boundary layer
    Chauhan, K ; Philip, J ; de Silva, CM ; Hutchins, N ; Marusic, I (CAMBRIDGE UNIV PRESS, 2014-03)
    Abstract The turbulent/non-turbulent interface in a zero-pressure-gradient turbulent boundary layer at high Reynolds number ($\mathit{Re}_\tau =14\, 500$) is examined using particle image velocimetry. An experimental set-up is utilized that employs multiple high-resolution cameras to capture a large field of view that extends $2\delta \times 1.1\delta $ in the streamwise/wall-normal plane with an unprecedented dynamic range. The interface is detected using a criteria of local turbulent kinetic energy and proves to be an effective method for boundary layers. The presence of a turbulent/non-turbulent superlayer is corroborated by the presence of a jump for the conditionally averaged streamwise velocity across the interface. The steep change in velocity is accompanied by a discontinuity in vorticity and a sharp rise in the Reynolds shear stress. The conditional statistics at the interface are in quantitative agreement with the superlayer equations outlined by Reynolds (J. Fluid Mech., vol. 54, 1972, pp. 481–488). Further analysis introduces the mass flux as a physically relevant parameter that provides a direct quantitative insight into the entrainment. Consistency of this approach is first established via the equality of mean entrainment calculations obtained using three different methods, namely, conditional, instantaneous and mean equations of motion. By means of ‘mass-flux spectra’ it is shown that the boundary-layer entrainment is characterized by two distinctive length scales which appear to be associated with a two-stage entrainment process and have a substantial scale separation.
  • Item
    Thumbnail Image
    A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows
    Mathis, R ; Hutchins, N ; Marusic, I (CAMBRIDGE UNIV PRESS, 2011-08)
    A model is proposed with which the statistics of the fluctuating streamwise velocity in the inner region of wall-bounded turbulent flows are predicted from a measured large-scale velocity signature from an outer position in the logarithmic region of the flow. Results, including spectra and all moments up to sixth order, are shown and compared to experimental data for zero-pressure-gradient flows over a large range of Reynolds numbers. The model uses universal time-series and constants that were empirically determined from zero-pressure-gradient boundary layer data. In order to test the applicability of these for other flows, the model is also applied to channel, pipe and adverse-pressure-gradient flows. The results support the concept of a universal inner region that is modified through a modulation and superposition of the large-scale outer motions, which are specific to the geometry or imposed streamwise pressure gradient acting on the flow.