Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
  • Item
    Thumbnail Image
    Large-scale influences in near-wall turbulence
    Hutchins, N ; Marusic, I (ROYAL SOC, 2007-03-15)
    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
  • Item
    Thumbnail Image
    Strategies for the visualization of multiple 2D vector fields
    Urness, T ; Interrante, V ; Longmire, E ; Marusic, I ; O'Neill, S ; Jones, TW (IEEE COMPUTER SOC, 2006)
  • Item
  • Item
    Thumbnail Image
    Reynolds number invariance of the structure inclination angle in wall turbulence
    Marusic, I ; Heuer, WDC (AMER PHYSICAL SOC, 2007-09-14)
    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
  • Item
    Thumbnail Image
    Laminar and turbulent comparisons for channel flow and flow control
    Marusic, I ; Joseph, DD ; Mahesh, K (CAMBRIDGE UNIV PRESS, 2007-01-10)
    A formula is derived that shows exactly how much the discrepancy between the volume flux in laminar and in turbulent flow at the same pressure gradient increases as the pressure gradient is increased. We compare laminar and turbulent flows in channels with and without flow control. For the related problem of a fixed bulk-Reynolds-number flow, we seek the theoretical lowest bound for skin-friction drag for control schemes that use surface blowing and suction with zero-net volume-flux addition. For one such case, using a crossflow approach, we show that sustained drag below that of the laminar-Poiseuille-flow case is not possible. For more general control strategies we derive a criterion for achieving sublaminar drag and use this to consider the implications for control strategy design and the limitations at high Reynolds numbers.
  • Item
    Thumbnail Image
    A comparison of turbulent pipe, channel and boundary layer flows
    Monty, JP ; Hutchins, N ; Ng, HCH ; Marusic, I ; Chong, MS (CAMBRIDGE UNIV PRESS, 2009-08-10)
    The extent or existence of similarities between fully developed turbulent pipes and channels, and in zero-pressure-gradient turbulent boundary layers has come into question in recent years. This is in contrast to the traditionally accepted view that, upon appropriate normalization, all three flows can be regarded as the same in the near-wall region. In this paper, the authors aim to provide clarification of this issue through streamwise velocity measurements in these three flows with carefully matched Reynolds number and measurement resolution. Results show that mean statistics in the near-wall region collapse well. However, the premultiplied energy spectra of streamwise velocity fluctuations show marked structural differences that cannot be explained by scaling arguments. It is concluded that, while similarities exist at these Reynolds numbers, one should exercise caution when drawing comparisons between the three shear flows, even near the wall.
  • Item
    Thumbnail Image
    Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
    Mathis, R ; Hutchins, N ; Marusic, I (CAMBRIDGE UNIV PRESS, 2009-06-10)
    In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007a, pp. 647–664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow, 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692–701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ~ 103–104 to atmospheric surface layer measurements at Reτ ~ 106.
  • Item
    Thumbnail Image
    Unravelling turbulence near walls
    Marusic, I (CAMBRIDGE UNIV PRESS, 2009-07-10)
    Turbulent flows near walls have been the focus of intense study since their first description by Ludwig Prandtl over 100 years ago. They are critical in determining the drag and lift of an aircraft wing for example. Key challenges are to understand the physical mechanisms causing the transition from smooth, laminar flow to turbulent flow and how the turbulence is then maintained. Recent direct numerical simulations have contributed significantly towards this understanding.