Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    The effect of aspect ratio and divergence on the turbulence structure of boundary layers
    Jones, M. B. ; Marusic, I. ; Perry, A. E. ( 2007)
    The effect of the aspect ratio of a turbulent boundary layer on the mean flow, broadband turbulence intensities and Reynolds shear stress has been studied. The aspect ratio (AR) is defined as the boundary layer thickness divided by the boundary layer width, i.e. the effective wind tunnel width. Measurements have been taken in a nominally zero pressure gradient layer at a single station for three different aspect ratio settings, AR=1/4, AR=1/7, and AR=1/13. The measurements show that the turbulent quantities were unaffected when the aspect ratio was increased from AR=1/13 to AR=1/7. However at AR=1/4 there appears to be a slight increase in the broadband turbulence intensities and Reynolds shear stress.
  • Item
    Thumbnail Image
    Surface shear stress fluctuations in the atmospheric surface layer
    Monty, J. P. ; Chong, M. S. ; Hutchins, N. ; Marusic, I. ( 2006)
    A lightweight, high frequency response, floating element sensor was used to measure wall shear stress fluctuations in an atmospheric surface layer. The sensor uses a laser position measurement system to track the motion of the floating element. The measurements were taken as part of an internationally coordinated experimental program designed to make extensive spatial and temporal measurements of velocity, temperature and wall shear stress of the surface layer. Velocity measurements were made with both a 27m high vertical array and a 100m wide horizontal array of sonic anemometers; 18 anemometers in total were employed. Cross-correlations of shear stress and streamwise velocity fluctuations were analysed in an attempt to identify structure angles in the flow. The results were shown to compare favourably with experimental data from controlled, laboratory turbulent boundary layer measurements at three orders of magnitude lower Reynolds number.
  • Item
    Thumbnail Image
    Some predictions of the attached eddy model for a high Reynolds number boundary layer
    Nickels, T. B. ; Marusic, I. ; Hafez, S. ; Hutchins, N. ; Chong, M. S. (Royal Society Publishing, 2007-01)
    Many flows of practical interest occur at high Reynolds number, at which the flow inmost of the boundary layer is turbulent, showing apparently random fluctuations invelocity across a wide range of scales. The range of scales over which these fluctuationsoccur increases with the Reynolds number and hence high Reynolds number flows aredifficult to compute or predict. In this paper, we discuss the structure of these flows anddescribe a physical model, based on the attached eddy hypothesis, which makespredictions for the statistical properties of these flows and their variation with Reynoldsnumber. The predictions are shown to compare well with the results from recentexperiments in a new purpose-built high Reynolds number facility. The model is alsoshown to provide a clear physical explanation for the trends in the data. The limits ofapplicability of the model are also discussed.
  • Item
  • Item
    Thumbnail Image
    Large-scale influences in near-wall turbulence
    Hutchins, N ; Marusic, I (ROYAL SOC, 2007-03-15)
    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
  • Item
    Thumbnail Image
    Strategies for the visualization of multiple 2D vector fields
    Urness, T ; Interrante, V ; Longmire, E ; Marusic, I ; O'Neill, S ; Jones, TW (IEEE COMPUTER SOC, 2006)
  • Item
    Thumbnail Image
    Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer
    Hambleton, W. T. ; Hutchins, N. ; Marusic, I. (Cambridge University Press, 2006)
    Stereoscopic particle image velocimetry (PIV) measurements were taken simultaneously in streamwise–spanwise and streamwise–wall-normal planes in a zero pressure-gradient turbulent boundary layer over a flat plate. Polarization techniques were employed to allow PIV to be taken in both planes simultaneously. Image preprocessing techniques were used to improve the quality of data near the line of intersection of the planes. Linear stochastic estimation was performed on these data, revealing the streamwise, spanwise, and wall-normal extent of swirl events primarily near the top of the log region of the boundary layer. Swirl events with rotation consistent with the mean vorticity are found to have a large footprint inthe lower limit of the log region whereas swirls with opposite-signed vorticity are found to have little influence lower in the boundary layer. These long-time-averaged statistics contain features that are consistent with the hairpin packet model (or its kinematic equivalent). This model also seems to provide a reasonable description of many instantaneous events involving large-scale coherence, where long regions of streamwise momentum deficit are surrounded by vortex cores.
  • Item
    Thumbnail Image
    Experimental investigation of vortex properties in a turbulent boundary layer
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. (American Institute of Physics, 2006)
    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Ret =1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45 degrees with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.
  • Item
  • Item
    Thumbnail Image
    Reynolds number invariance of the structure inclination angle in wall turbulence
    Marusic, I ; Heuer, WDC (AMER PHYSICAL SOC, 2007-09-14)
    Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.