Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Stress equation based scaling framework for adverse pressure gradient turbulent boundary layers
    Romero, SK ; Zimmerman, SJ ; Philip, J ; Klewicki, JC (Elsevier, 2022-02-01)
    This paper provides a framework for estimating appropriate turbulent velocity scales in adverse pressure gradient turbulent boundary layers (APG TBLs) via a study of the mean stress balance. We examine the velocity scales of APG TBLs using the relationship between the Reynolds shear stress and pressure stress. It is reasoned that as distance from the wall increases the velocity scaling transitions from one dominated by the wall-shear-stress velocity scale, uτ, to a scaling dominated by the pressure stress. A velocity scale, uhyb, is proposed that varies with distance from the wall and combines the wall-shear-stress velocity with a pressure-stress-based velocity. This investigation uses new high Reynolds number (7000≲Reτ≲7800) experimental measurements, existing lower Reynolds number experimental (600≲Reτ≲2000) and computational (Reτ<700) data sets. The proposed velocity scale realizes similarity in the turbulent stress profiles to a degree that is superior to that achievable via any wall-distance-independent velocity scale when considering the full extent of the flow domain.
  • Item
  • Item
  • Item
    Thumbnail Image
    Simultaneous skin friction and velocity measurements in high Reynolds number pipe and boundary layer flows
    Baidya, R ; Baars, WJ ; Zimmerman, S ; Samie, M ; Hearst, RJ ; Dogan, E ; Mascotelli, L ; Zheng, X ; Bellani, G ; Talamelli, A ; Ganapathisubramani, B ; Hutchins, N ; Marusic, I ; Klewickil, J ; Monty, JP (Cambridge University Press (CUP), 2019-07-25)
    Streamwise velocity and wall-shear stress are acquired simultaneously with a hot-wire and an array of azimuthal/spanwise-spaced skin friction sensors in large-scale pipe and boundary layer flow facilities at high Reynolds numbers. These allow for a correlation analysis on a per-scale basis between the velocity and reference skin friction signals to reveal which velocity-based turbulent motions are stochastically coherent with turbulent skin friction. In the logarithmic region, the wall-attached structures in both the pipe and boundary layers show evidence of self-similarity, and the range of scales over which the self-similarity is observed decreases with an increasing azimuthal/spanwise offset between the velocity and the reference skin friction signals. The present empirical observations support the existence of a self-similar range of wall-attached turbulence, which in turn are used to extend the model of Baars et al. (J. Fluid Mech., vol. 823, p. R2) to include the azimuthal/spanwise trends. Furthermore, the region where the self-similarity is observed correspond with the wall height where the mean momentum equation formally admits a self-similar invariant form, and simultaneously where the mean and variance profiles of the streamwise velocity exhibit logarithmic dependence. The experimental observations suggest that the self-similar wall-attached structures follow an aspect ratio of in the streamwise, spanwise and wall-normal directions, respectively.