Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
    Ganapathisubramani, B. ; Hutchins, N. ; Hambleton, W. T. ; Longmire, E. K. ; Marusic, I. (Cambridge University Press, 2005)
    Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at 45◦ and 135◦ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number (Reτ ∼ 1100). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outerwake region. Both streamwise–streamwise (Ruu) and streamwise–wall-normal (Ruw)correlations are significant for streamwise displacements of more than 1500 wallunits. Zero crossing data for the streamwise fluctuating component u reveal that streamwise strips between zero crossings of 1500 wall units or longer occur morefrequently for negative u than positive u, suggesting that long streamwise correlations in Ruu are dominated by slower streamwise structures. Additional analysis of Rwwcorrelations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur withinpackets of angled hairpin vortices. At a wall-normal location outside of the log region (z/δ =0.5), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data revealgood agreement with the streamwise–spanwise plane. Ruu in the 45◦ plane is more elongated along the in-plane wall-normal direction than in the 135◦ plane, which isconsistent with the presence of hairpin packets with a low-speed region lifting away from the wall.
  • Item
    Thumbnail Image
    Spanwise periodicity and the existence of very large scale coherence in turbulent boundary layers
    Hutchins, N ; Ganapathisubramani, B ; Marusic, I (Begellhouse, 2005-12-01)
  • Item
    Thumbnail Image
    Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers
    Hutchins, N. ; Hambleton, W. T. ; MARUSIC, IVAN (Cambridge University Press, 2005)
    This work can be viewed as a reprise of Head & Bandyopadhyay’s (J. Fluid Mech. vol. 107, 1981, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45° and 135° to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Reτ ≈690–2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135° plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135° plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall–wake description of turbulent boundary layers.
  • Item
    Thumbnail Image
    Dual-plane PIV technique to determine complete velocity gradient tensor in a turbulent boundary layer
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. ; Pothos, S. ( 2005)
    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (ReT ~ 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35° to the streamwise-spanwise plane with a resulting projected eddy inclination of 43° in the streamwise-wall-normal plane.
  • Item
    Thumbnail Image
    Evidence of the k1-1 law in a high-Reynolds-number turbulent boundary layer
    Nickels, T. B. ; Marusic, I. ; Hafez, S. ; Chong, M. S. (The American Physical Society, 2005)
    Dimensional analysis and overlap arguments lead to a prediction of a region in the streamwise velocityspectrum of wall-bounded turbulent flows in which the dependence on the streamwise wave number, k1, isgiven by k 1-1 . Some recent experiments have questioned the existence of this region. In this Letter,experimental spectra are presented which support the existence of the k 1-1 law in a high-Reynolds-numberboundary layer. This Letter presents the experimental results and discusses the theoretical and experimentalissues involved in examining the existence of the k 1-1 law and the reasons why it has proved so elusive.
  • Item
    Thumbnail Image
    Turbulence wall-shear stress sensor for the atmospheric surface layer
    Heuer, WDC ; Marusic, I (IOP PUBLISHING LTD, 2005-08)
  • Item
    Thumbnail Image
    Face localisation for driver fatigue recognition
    SENARATNE, R ; HALGAMUGE, SK (IEEE, 2005)
  • Item
    Thumbnail Image
    Optimized rule-based delay proportion adjustment-for proportional differentiated services
    Patchararungruang, S ; Halgamuge, SK ; Shenoy, N (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2005-02)
  • Item
    Thumbnail Image
    Reaction kinetics in Ti3SiC2 synthesis studied by time-resolved neutron diffraction
    Wu, E ; Riley, DP ; Kisi, EH ; Smith, RI (ELSEVIER SCI LTD, 2005-10)