Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 224
  • Item
    Thumbnail Image
    Experimental investigation of boundary layer transition in flow past a bluff body
    Deshpande, R ; Desai, A ; Kanti, V ; Mittal, S ; Tso, CP (Institute of Physics (IoP), 2017-01-01)
    We explore the phenomenon of drag crisis observed for the flow over bluff bodies at high Reynolds numbers. The drag coefficient reduces significantly beyond a certain Re due to the transition of the boundary layer from laminar to turbulent state. Flow past a smooth sphere and a circular cylinder is experimentally investigated for 1.0 × 105 ≤ Re ≤ 5.0 × 105 via unsteady force, surface-pressure and 2-D Particle Image Velocimetry(PIV) measurements. In case of a smooth sphere, the drag crisis is observed for Re > 3.3 × 105. The unsteady force measurements reveal that the fluctuations in the force coefficients initially increase with Re in the high subcritical regime and then experience a steep fall in the critical regime. It is found from the PIV measurements that the normal Reynolds stresses in the separated shear layer from the sphere are one order lower in magnitude for the supercritical regime in comparison to the subcritical regime. In the case of flow past a smooth circular cylinder, a two-stage drag crisis is captured using surface-pressure measurements where the boundary layer over one side of the cylinder undergoes transition around Re = 3.9 × 105 and that over the second side transitions around Re = 4.8 × 105. The transition is accompanied with increased fluctuations in the surface-pressure coefficients near the shoulders of the cylinder.
  • Item
    Thumbnail Image
    Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights
    Ewing, KA ; Begg, RK ; Galea, MP ; Lee, PVS (SAGE PUBLICATIONS INC, 2016-07)
    BACKGROUND: Anterior cruciate ligament (ACL) injuries commonly occur during landing maneuvers. Prophylactic knee braces were introduced to reduce the risk of ACL injuries, but their effectiveness is debated. HYPOTHESES: We hypothesized that bracing would improve biomechanical factors previously related to the risk of ACL injuries, such as increased hip and knee flexion angles at initial contact and at peak vertical ground-reaction force (GRF), increased ankle plantar flexion angles at initial contact, decreased peak GRFs, and decreased peak knee extension moment. We also hypothesized that bracing would increase the negative power and work of the hip joint and would decrease the negative power and work of the knee and ankle joints. STUDY DESIGN: Controlled laboratory study. METHODS: Three-dimensional motion and force plate data were collected from 8 female and 7 male recreational athletes performing double-leg drop landings from 0.30 m and 0.60 m with and without a prophylactic knee brace. GRFs, joint angles, moments, power, and work were calculated for each athlete with and without a knee brace. RESULTS: Prophylactic knee bracing increased the hip flexion angle at peak GRF by 5.56° (P < .001), knee flexion angle at peak GRF by 4.75° (P = .001), and peak hip extension moment by 0.44 N·m/kg (P < .001). Bracing also increased the peak hip negative power by 4.89 W/kg (P = .002) and hip negative work by 0.14 J/kg (P = .001) but did not result in significant differences in the energetics of the knee and ankle. No differences in peak GRFs and peak knee extension moment were observed with bracing. CONCLUSION: The application of a prophylactic knee brace resulted in improvements in important biomechanical factors associated with the risk of ACL injuries. CLINICAL RELEVANCE: Prophylactic knee braces may help reduce the risk of noncontact knee injuries in recreational and professional athletes while playing sports. Further studies should investigate different types of prophylactic knee braces in conjunction with existing training interventions so that the sports medicine community can better assess the effectiveness of prophylactic knee bracing.
  • Item
    Thumbnail Image
    Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing
    Ewing, KA ; Fernandez, JW ; Begg, RK ; Galea, MP ; Lee, PVS (ELSEVIER SCI LTD, 2016-10-03)
    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements.
  • Item
    Thumbnail Image
    Averaging for nonlinear systems on Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; Dower, PM (IEEE, 2013)
    This paper provides a derivation of the averaging methods for nonlinear time-varying dynamical systems defined on Riemannian manifolds. We extend the results on ℝ n to Riemannian manifolds by employing the language of differential geometry.
  • Item
    Thumbnail Image
    Extremum seeking control for nonlinear systems on compact Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; DOWER, PM (IEEE Press, 2014)
    This paper formulates the extremum seeking control problem for nonlinear dynamical systems which evolve on Riemannian manifolds and presents stability results for a class of numerical algorithms defined in this context. The results are obtained based upon an extension of extremum seeking algorithms in Euclidean spaces and a generalization of Lyapunov stability theory for dynamical systems defined on Rimannian manifolds. We employ local properties of Lyapunov functions to extend the singular perturbation analysis on Riemannian manifolds. Consequently, the results of the singular perturbation on manifolds are used to obtain the convergence of extremum seeking algorithms for dynamical systems on Riemannian manifolds.
  • Item
    Thumbnail Image
    Coordination of blind agents on Lie groups
    Taringoo, F ; Nesic, D ; DOWER, P ; Tan, Y (IEEE, 2015)
    This paper presents an algorithm for the synchronization of blind agents evolving on a connected Lie group. We employ the method of extremum seeking control for nonlinear dynamical systems defined on connected Riemannian manifolds to achieve the synchronization among the agents. This approach is independent of the underlying graph of the system and each agent updates its position on the connected Lie group by only receiving the synchronization cost function.
  • Item
    Thumbnail Image
    Closeness of solutions and averaging for nonlinear systems on Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; Dower, PM (IEEE, 2013)
    An averaging result for periodic dynamical systems evolving on Euclidean spaces is extended to those evolving on (differentiable) Riemannian manifolds. Using standard tools from differential geometry, a perturbation result for time-varying dynamical systems is developed that measures closeness of trajectories via a suitable metric on a finite time horizon. This perturbation result is then extended to bound excursions in the trajectories of periodic dynamical systems from those of their respective averages, on an infinite time horizon, yielding the specified averaging result. Some simple examples further illustrating this result are also presented.
  • Item
    Thumbnail Image
    A UNIFYING FRAMEWORK FOR ANALYSIS AND DESIGN OF EXTREMUM SEEKING CONTROLLERS
    Nesic, D ; Tan, Y ; Manzie, C ; Mohammadi, A ; Moase, W (IEEE, 2012-01-01)
    We summarize a unifying design approach to continuous-time extremum seeking that was recently reported by the authors. This approach is based on a feedback control paradigm that was to the best of our knowledge explicitly summarized for the first time in this form in our recent work. This paradigm covers some existing extremum seeking schemes, provides a direct link to off-line optimization and can be used as a unifying framework for design of novel extremum seeking schemes. Moreover, we show that other extremum seeking problem formulations can be interpreted using this unifying viewpoint. We believe that this unifying view will be invaluable to systematically design and analyze extremum seeking controllers in various settings.
  • Item
    Thumbnail Image
    Trajectory-based proofs for sampled-data extremum seeking control
    KHONG, S ; Nesic, D ; Tan, Y ; Manzie, CG (IEEE, 2013)
    Extremum seeking of nonlinear systems based on a sampled-data control law is revisited. It is established that under some generic assumptions, semi-global practical asymptotically stable convergence to an extremum can be achieved. To this end, trajectory-based arguments are employed, by contrast with Lyapunov-function-type approaches in the existing literature. The proof is simpler and more straightforward; it is based on assumptions that are in general easier to verify. The proposed extremum seeking framework may encompass more general optimisation algorithms, such as those which do not admit a state-update realisation and/or Lyapunov functions. Multi-unit extremum seeking is also investigated within the context of accelerating the speed of convergence.
  • Item
    Thumbnail Image
    On a Shubert Algorithm-Based Global Extremum Seeking Scheme
    Nesic, D ; Nguyen, T ; Tan, Y ; Manzie, C (IEEE, 2012)
    This paper adapts the so-called Shubert algorithm for Extremum Seeking Control (ESC) to seek the global extremum (in presence of local extrema) of general dynamic plants. Different from derivative based methods that are widely used in ESC, the Shubert algorithm is a good representative of sampling optimization methods. With knowledge of the Lipschitz constant of an unknown static mapping, this deterministic algorithm seeks the global extremum. By introducing “waiting time” the proposed Shubert algorithm-based global extremum seeking guarantees the semi-global practical convergence (in the initial states) to the global extremum if compact sets of inputs are considered. Several numerical examples demonstrate how proposed method may be successfully deployed.