Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 64
  • Item
    Thumbnail Image
    Effect Of Arm Deweighting Using End-Effector Based Robotic Devices On Muscle Activity.
    Fong, J ; Crocher, V ; Haddara, R ; Ackland, D ; Galea, M ; Tan, Y ; Oetomo, D (IEEE, 2018)
    Deweighting of the limb is commonly performed for patients with a neurological injury, such as stroke, as it allows these patients with limited muscle activity to perform movements. Deweighting has been implemented in exoskeletons and other multi-contact devices, but not on an end-effector based device with single contact point between the assisting robot and the human limb being assisted. This study inves-tigates the effects of deweighting using an end-effector based device on healthy subjects. The muscle activity of five subjects was measured in both static postures and dynamic movements. The results indicate a decrease in the activity of muscles which typically act against gravity - such as the anterior deltoid and the biceps brachii - but also suggest an increase in activity in muscles which act with gravity - such as the posterior deltoid and the lateral triceps. This can be explained by both the change in required muscle-generated torques and a conscious change in approach by the participants. These observations have implications for neurorehabilitation, particularly with respect to the muscle activation patterns which are trained through rehabilitation exercises.
  • Item
    Thumbnail Image
    Extremum seeking control for nonlinear systems on compact Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; DOWER, PM (IEEE Press, 2014)
    This paper formulates the extremum seeking control problem for nonlinear dynamical systems which evolve on Riemannian manifolds and presents stability results for a class of numerical algorithms defined in this context. The results are obtained based upon an extension of extremum seeking algorithms in Euclidean spaces and a generalization of Lyapunov stability theory for dynamical systems defined on Rimannian manifolds. We employ local properties of Lyapunov functions to extend the singular perturbation analysis on Riemannian manifolds. Consequently, the results of the singular perturbation on manifolds are used to obtain the convergence of extremum seeking algorithms for dynamical systems on Riemannian manifolds.
  • Item
    Thumbnail Image
    Coordination of blind agents on Lie groups
    Taringoo, F ; Nesic, D ; DOWER, P ; Tan, Y (IEEE, 2015)
    This paper presents an algorithm for the synchronization of blind agents evolving on a connected Lie group. We employ the method of extremum seeking control for nonlinear dynamical systems defined on connected Riemannian manifolds to achieve the synchronization among the agents. This approach is independent of the underlying graph of the system and each agent updates its position on the connected Lie group by only receiving the synchronization cost function.
  • Item
    Thumbnail Image
    Multi-agent gradient climbing via extremum seeking control
    Kong, SZ ; Manzie, CG ; Tan, Y ; Nesic, D (IFAC - International Federation of Automatic Control, 2014)
    A unified framework based on discrete-time gradient-based extremum seeking control is proposed to localise an extremum of an unknown scalar field distribution using a group of equipped with sensors. The controller utilises estimates of gradients of the field from local dithering sensor measurements collected by the mobile agents. It is assumed that distributed coordination which ensures uniform asymptotic stability with respect to a prescribed formation of the agents is employed. The framework is useful in that a broad range of nonlinear programming algorithms can be combined with a wide class of cooperative control laws to perform extreme source seeking. Semi-global practical asymptotically stable convergence to local extrema is established in the presence of bounded field sampling noise.
  • Item
    Thumbnail Image
    Improving L₂ Gain Performance of Linear Systems by Reset Control
    Zhao, G ; NESIC, D ; Tan, Y ; Wang, J ; Boje, E ; Xia, X (IFAC - International Federation of Automatic Control, 2014)
    In this paper, new Lyapunov-based reset rules are constructed to improve C2 gain performance of linear-time-invariant (LTI) systems. By using the hybrid system framework, sufficient conditions for exponential and finite gain C2 stability are presented. It is shown that the C2 gain of the closed loop system with resets can be improved compared with the base system. Numerical example supports our results.
  • Item
    Thumbnail Image
    PDE Battery Model Simplification for Charging Strategy Evaluation
    Zou, C ; MANZIE, C ; Nesic, D ; Che Soh, A ; Selamat, H ; Rahman, RZA ; Ishak, AJ ; Ahmad, SA ; Ramli, HRH ; Faudzi, A (IEEE Press, 2015)
    A safe, fast charging strategy is desired in the utilisation of rechargeable Lithium-ion batteries. Traditionally, experimental methods are used in exploring and evaluating new strategies, but these require extensive time and cost. This paper aims to establish a model-based system for quick and accurate evaluation of charging strategies. Starting from a nonlinear coupled partial differential equation (PDE) battery model that accurately captures system dynamics, simplification techniques are conducted based on the identification of separable time scales within the states. By pertinent use of a singular perturbation approach, a PDE model simplification framework containing families of simplified battery models is established. All assumptions are explicitly stated and shown to enable families of simplified models to be rigorously justified. An evaluation procedure synthesised from the simplified models and averaging theory is proposed. This procedure is implemented on several typical battery charging strategies. The benefits relative to simulation on other higher order models are assessed in terms of computational efficiency and accuracy and demonstrate significant computational savings are possible with the proposed approach.
  • Item
    Thumbnail Image
    PDE Battery Model Simplification for SOC and SOH Estimator Design
    Zou, C ; Kallapur, AG ; MANZIE, C ; Nesic, D (IEEE, 2015)
    Accurate knowledge of the battery state-of-charge (SOC) and state-of-health (SOH) is critical for optimal and safe utilisation of the battery. Although the battery system dynamics contain electrochemical, thermal, electrical, and ageing phenomena, most state estimators resort to equivalent circuit models (ECM). These models are often not accurate and are problematic for SOC estimation during an extended range of operations and do not address SOH dynamics. In this paper, starting from an initial high-fidelity Lithium-ion (Li-ion) battery model consisting of a set of partial differential equations (PDE), a recently proposed framework for PDE battery model simplification is employed and one of these obtained models is used for battery state estimation. Model order reduction techniques are then constructively applied to the simplified PDE battery model and resulted in a computationally efficient ordinary differential equation (ODE) model. Based on this obtained ODE model, an extended Kalman filter (EKF) is designed for the estimation of both SOC and SOH. Simulations over 20 cycles show the designed estimator is capable of simultaneously estimating the battery's SOC in each electrode and SOH.
  • Item
    Thumbnail Image
    Hybrid Extremum Seeking for Black-Box Optimization in Hybrid Plants: An Analytical Framework
    Poveda, JI ; Kutadinata, R ; Manzie, C ; Nesic, D ; Teel, AR ; Liao, C-K (IEEE, 2018-01-01)
    This paper presents an analytical framework to design and analyze hybrid extremum seeking controllers for plants with hybrid dynamics. The extremum seeking controllers are characterized by a hybrid dither generator, a hybrid Jacobian estimator, and a hybrid dynamic optimizer. This structure allows us to consider a family of novel extremum seeking controllers that have not been studied in the literature before. Moreover, the hybrid extremum seeking controllers can be applied to plants with hybrid dynamics generating well-defined response maps. A convergence result is established for the closed -loop system by using singular perturbation theory for hybrid dynamical systems with hybrid boundary layers.
  • Item
    Thumbnail Image
    System of funnels framework for robust global non-linear control
    Shvartsman, R ; Teel, AR ; Oetomo, D ; Nešić, D (IEEE, 2016)
    There exist various methods for planning nominal trajectories to guide desired behaviours of non-linear systems, along with constructive methods for computing finite-time invariant sets, termed funnels, about locally-stabilized nominal trajectories. In order to achieve a desired behaviour defined by a set of nominal trajectories and their corresponding funnels, one has to switch from one local control to another at the right instances. This paper presents a general hybrid-control framework which is designed for correct switching between locally stabilizing controllers and can be used in conjunction with various approaches for funnel computation. Our framework prescribes exact connectivity conditions to be satisfied by the different funnels used such that the desired behaviour is achieved globally and in a robust manner. Due to its generality, the framework can be applied to implement a wide class of dynamic behaviours. An example of a periodic behaviour governed by our framework is provided.
  • Item
    Thumbnail Image
    Nonlinear Observer Based Control Design for an Under-actuated Compliant Robotic Hand
    Garcia-Rosas, R ; Portella-Delgado, JM ; Tan, Y ; NESIC, D (Engineers Australia, 2016)
    This work aims at designing control algorithms for an under-actuated compliant adaptive prosthetic hand to perform a complex task of grasping and manipulating of an unknown object. As multiple objectives are considered, if one controller is designed for one control objective, a hybrid controller is needed to coordinate different controllers to perform complex tasks. This work thus tries to apply recently developed framework of System of Funnels to the underactuated compliant adaptive prosthetic hand to design this hybrid controller. In order to apply System of Funnels, each controller has to have the flexibility to obtain any given domain of attraction by tuning its parameters. This paper proposed nonlinear observer based PID controllers for Grasp Approach and Grasp Stabilization. The nonlinear observer estimates the needed velocity of the under-actuated compliant adaptive prosthetic hand. By tuning parameters of PID controller and nonlinear observers appropriately, any desired domain of attraction for each control objective can be achieved. Our next step is to design some manipulation controller with adjustable domain of attraction in order to apply the framework of System of Funnels.