Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support
    Marusic, I. ; Perry, A. E. (Cambridge University Press, 1995)
    In Part 1 an extension of the attached eddy hypothesis was developed and applied to equilibrium pressure gradient turbulent boundary layers. In this paper the formulation is applied to data measured by the authors from non-equilibrium layers and agreement with the extended theory is encouraging. Also power spectra of the Reynolds stresses as developed from the extended theory compare favourably with experiment. The experimental data include a check of cone-angle effects by using a flying hot wire.
  • Item
    Thumbnail Image
    On the validity of Taylor's hypothesis in wall turbulence
    Uddin, A. K. Mesbah ; Perry, A. E. ; MARUSIC, IVAN ( 1997)
    The validity of Taylor’s hypothesis of frozen turbulence has been the issue of much debate, especially when applied to flows with strong shear and high turbulence intensities. In the past, Taylor’s hypothesis was used by various researchers for the quantitative interpretation of the structure angle of the eddies on the basis of double-velocity correlations (eg. Alving et al. [1]) or velocity-wall pressure or velocity-wall shear stress correlations (e.g. Brown & Thomas [2] , Rajagopalan & Antonia [6]. In light of the ambiguity associated with Taylor’s hypothesis, naturally, there are resultant uncertainties in terms of the measured structure angle. Subsequently there is a need to investigate how do these uncertainties effect the structure angle measurements and as well as to examine the validity of Taylor’s hypothesis when applied to two-point double-velocity correlation measurements in an anisotropic shear flow.