Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 42
  • Item
    Thumbnail Image
    Effects of changing aspect ratio through a wind tunnel contraction
    Callan, J. ; Marusic, I. (American Institute of Aeronautics & Astronautics, 2001)
    No abstract.
  • Item
    Thumbnail Image
    The effect of aspect ratio and divergence on the turbulence structure of boundary layers
    Jones, M. B. ; Marusic, I. ; Perry, A. E. ( 2007)
    The effect of the aspect ratio of a turbulent boundary layer on the mean flow, broadband turbulence intensities and Reynolds shear stress has been studied. The aspect ratio (AR) is defined as the boundary layer thickness divided by the boundary layer width, i.e. the effective wind tunnel width. Measurements have been taken in a nominally zero pressure gradient layer at a single station for three different aspect ratio settings, AR=1/4, AR=1/7, and AR=1/13. The measurements show that the turbulent quantities were unaffected when the aspect ratio was increased from AR=1/13 to AR=1/7. However at AR=1/4 there appears to be a slight increase in the broadband turbulence intensities and Reynolds shear stress.
  • Item
    Thumbnail Image
    Surface shear stress fluctuations in the atmospheric surface layer
    Monty, J. P. ; Chong, M. S. ; Hutchins, N. ; Marusic, I. ( 2006)
    A lightweight, high frequency response, floating element sensor was used to measure wall shear stress fluctuations in an atmospheric surface layer. The sensor uses a laser position measurement system to track the motion of the floating element. The measurements were taken as part of an internationally coordinated experimental program designed to make extensive spatial and temporal measurements of velocity, temperature and wall shear stress of the surface layer. Velocity measurements were made with both a 27m high vertical array and a 100m wide horizontal array of sonic anemometers; 18 anemometers in total were employed. Cross-correlations of shear stress and streamwise velocity fluctuations were analysed in an attempt to identify structure angles in the flow. The results were shown to compare favourably with experimental data from controlled, laboratory turbulent boundary layer measurements at three orders of magnitude lower Reynolds number.
  • Item
    Thumbnail Image
    On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients
    Perry, A. E. ; Marusic, I. ; Jones, M. B. (Cambridge University Press, 2002)
    A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such asthe log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.
  • Item
    Thumbnail Image
    Some predictions of the attached eddy model for a high Reynolds number boundary layer
    Nickels, T. B. ; Marusic, I. ; Hafez, S. ; Hutchins, N. ; Chong, M. S. (Royal Society Publishing, 2007-01)
    Many flows of practical interest occur at high Reynolds number, at which the flow inmost of the boundary layer is turbulent, showing apparently random fluctuations invelocity across a wide range of scales. The range of scales over which these fluctuationsoccur increases with the Reynolds number and hence high Reynolds number flows aredifficult to compute or predict. In this paper, we discuss the structure of these flows anddescribe a physical model, based on the attached eddy hypothesis, which makespredictions for the statistical properties of these flows and their variation with Reynoldsnumber. The predictions are shown to compare well with the results from recentexperiments in a new purpose-built high Reynolds number facility. The model is alsoshown to provide a clear physical explanation for the trends in the data. The limits ofapplicability of the model are also discussed.
  • Item
    Thumbnail Image
    Experimental study of wall boundary conditions for large-eddy simulation
    Marusic, I. ; Kunkel, G. J. ; Porte-Agel, F. ( 2001)
    An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at R = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wallnormal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and x-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with `outer-flow' scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.
  • Item
  • Item
    Thumbnail Image
    Evolution and structure of sink-flow turbulent boundary layers
    Jones, M. B. ; MARUSIC, IVAN ; Perry, A. E. ( 2001)
    An experimental and theoretical investigation of turbulent boundary layers developing in a sink-flow pressure gradient was undertaken. Three flow cases were studied, corresponding to different acceleration strengths. Mean-flow measurements were taken for all three cases, while Reynolds stresses and spectra measurements were made for two of the flow cases. In this study attention was focused on the evolution of the layers to an equilibrium turbulent state. All the layers were found to attain a state very close to precise equilibrium. This gave equilibrium sink flow data at higher Reynolds numbers than in previous experiments. The mean velocity profiles were found to collapse onto the conventional logarithmic law of the wall. However, for profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was observed near the buffer region, whereas the mean velocity profiles measured with a normal hot wire did not exhibit this deviation from the logarithmic law. As the layers approached equilibrium, the mean velocity profiles were found to approach the pure wall profile and for the highest level of acceleration Π was very close to zero, where Π is the Coles wake factor. This supports the proposition of Coles (1957), that the equilibrium sink flow corresponds to pure wall flow. Particular interest was also given to the evolutionary stages of the boundary layers, in order to test and further develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative agreement with the experimental results was found after slight modification of their original closure equation.
  • Item
    Thumbnail Image
    Large-scale influences in near-wall turbulence
    Hutchins, N ; Marusic, I (ROYAL SOC, 2007-03-15)
    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
  • Item
    Thumbnail Image
    Characteristics of vortex packets in turbulent boundary layers
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. ( 2003)
    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise–spanwise planes of a turbulent boundary layer at Ret =1060 (Re? =2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+ =92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times -uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to -uw while occupying only 4% of the total area at z+ =92. At z+ =150, these patches occupied 4.5% of the total area while contributing 25% to -uw. Beyond the log layer (z+ =198 and 530), the spatial organization into packets is seen to break down.