Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    The effect of cleaning and repainting on the ship drag penalty
    Utama, IKAP ; Nugroho, B ; Yusuf, M ; Prasetyo, FA ; Hakim, ML ; Suastika, IK ; Ganapathisubramani, B ; Hutchins, N ; Monty, JP (TAYLOR & FRANCIS LTD, 2021-07-01)
    Although the hull of a recently dry-docked large ship is expected to be relatively smooth, surface scanning and experimentation reveal that it can exhibit an "orange-peel" roughness pattern with an equivalent sand-grain roughness height ks = 0. 101 mm. Using the known ks value and integral boundary layer evolution, a recently cleaned and coated full-scale ship was predicted to experience a significant increase in the average coefficient of friction %ΔC¯f and total hydrodynamic resistance %ΔR¯T during operation. Here the report also discusses two recently reported empirical estimations that can estimate ks directly from measured surface topographical parameters, by-passing the need for experiments on replicated surfaces. The empirical estimations are found to have an accuracy of 4.5 - 5 percentage points in %ΔC¯f.
  • Item
    No Preview Available
    Non-k-type behaviour of roughness when in-plane wavelength approaches the boundary layer thickness
    Nugroho, B ; Monty, JP ; Utama, IKAP ; Ganapathisubramani, B ; Hutchins, N (CAMBRIDGE UNIV PRESS, 2021-01-22)
    Abstract
  • Item
    Thumbnail Image
    Dispersive stresses in turbulent flow over riblets
    Modesti, D ; Endrikat, S ; Hutchins, N ; Chung, D (Cambridge University Press, 2021-06-25)
    We carry out direct numerical simulations of turbulent flow over riblets, streamwise- aligned grooves that are designed to reduce drag by modifying the near-wall flow. Twenty riblet geometries and sizes are considered, namely symmetric triangular with tip angle, and, asymmetric triangular, blade and trapezoidal. To save on computational cost, simulations are performed using the minimal-channel flow configuration. With this unprecedented breadth of high-fidelity flow data near the wall, we are able to obtain more general insights into the flow physics of riblets. As observed by García-Mayoral & Jiménez (J. Fluid Mech., vol. 678, 2011, pp. 317-347), we confirm that the drag-change curves of all the present groove geometries better collapse when reported with the viscous-scaled square root of the groove area, rather than the riblet spacing. Using a two-dimensional generalization of the Fukagata-Iwamoto-Kasagi identity in difference form we isolate the different drag-change contributions. We show that the drag increase associated with dispersive stresses carried by secondary flows can be as important as the one associated with the turbulent stresses and the pre-eminence of dispersive stresses can be estimated by the groove width at the riblet mean height.
  • Item
    No Preview Available
    Aerosolisation in endonasal endoscopic pituitary surgery
    Dhillon, RS ; Nguyen, L ; Abu Rowin, W ; Humphries, RS ; Kevin, K ; Ward, JD ; Yule, A ; Phan, TD ; Zhao, YC ; Wynne, D ; McNeill, PM ; Hutchins, N ; Scott, DA (SPRINGER, 2021-08)
    PURPOSE: To determine the particle size, concentration, airborne duration and spread during endoscopic endonasal pituitary surgery in actual patients in a theatre setting. METHODS: This observational study recruited a convenience sample of three patients. Procedures were performed in a positive pressure operating room. Particle image velocimetry and spectrometry with air sampling were used for aerosol detection. RESULTS: Intubation and extubation generated small particles (< 5 µm) in mean concentrations 12 times greater than background noise (p < 0.001). The mean particle concentrations during endonasal access were 4.5 times greater than background (p = 0.01). Particles were typically large (> 75 µm), remained airborne for up to 10 s and travelled up to 1.1 m. Use of a microdebrider generated mean aerosol concentrations 18 times above baseline (p = 0.005). High-speed drilling did not produce aerosols greater than baseline. Pituitary tumour resection generated mean aerosol concentrations less than background (p = 0.18). Surgical drape removal generated small and large particles in mean concentrations 6.4 times greater than background (p < 0.001). CONCLUSION: Intubation and extubation generate large amounts of small particles that remain suspended in air for long durations and disperse through theatre. Endonasal access and pituitary tumour resection generate smaller concentrations of larger particles which are airborne for shorter periods and travel shorter distances.
  • Item
    No Preview Available
    Nasal preparation with local anesthetic should be considered an aerosol-generating procedure
    Dhillon, RS ; Nguyen, LV ; Rowin, WA ; Humphries, RS ; Kevin, K ; Ward, JD ; Yule, A ; Phan, TD ; Wynne, D ; McNeill, PM ; Hutchins, N ; Scott, DA ; Zhao, YC (WILEY, 2021-06)
  • Item
    Thumbnail Image
    Influence of riblet shapes on the occurrence of Kelvin-Helmholtz rollers
    Endrikat, S ; Modesti, D ; Garcia-Mayoral, R ; Hutchins, N ; Chung, D (CAMBRIDGE UNIV PRESS, 2021-03-02)
    We investigate turbulent flow over streamwise-aligned riblets (grooves) of various shapes and sizes. Small riblets with spacings of typically less than 20 viscous units are known to reduce skin-friction drag compared to a smooth wall, but larger riblets allow inertial-flow mechanisms to appear and cause drag reduction to break down. One of these mechanisms is a Kelvin–Helmholtz instability that García-Mayoral & Jiménez (J. Fluid Mech., vol. 678, 2011, pp. 317–347) identified in turbulent flow over blade riblets. In order to evaluate its dependence on riblet shape and thus gain a broader understanding of the underlying physics, we generate an extensive data set comprising 21 cases using direct numerical simulations of fully developed minimal-span channel flow. The data set contains six riblet shapes of varying sizes between maximum drag reduction and significant drag increase. Comparing the flow fields over riblets to that over a smooth wall, we find that in this data set only large sharp-triangular and blade riblets have a drag penalty associated with the Kelvin–Helmholtz instability and that the mechanism appears to be absent for blunt-triangular and trapezoidal riblets of any size. We therefore investigate two indicators for the occurrence of Kelvin–Helmholtz rollers in turbulent flow over riblets. First, we confirm for all six riblet shapes that the groove cross-sectional area in viscous units serves as a proxy for the wall-normal permeability that is necessary for the development of Kelvin–Helmholtz rollers. Additionally, we find that the occurrence of the instability correlates with a high momentum absorption at the riblet tips. The momentum absorption can be qualitatively predicted using Stokes flow.
  • Item
    No Preview Available
    Aerosolisation during tracheal intubation and extubation in an operating theatre setting
    Dhillon, RS ; Rowin, WA ; Humphries, RS ; Kevin, K ; Ward, JD ; Phan, TD ; Nguyen, LV ; Wynne, DD ; Scott, DA (WILEY, 2021-02)
    Aerosol-generating procedures such as tracheal intubation and extubation pose a potential risk to healthcare workers because of the possibility of airborne transmission of infection. Detailed characterisation of aerosol quantities, particle size and generating activities has been undertaken in a number of simulations but not in actual clinical practice. The aim of this study was to determine whether the processes of facemask ventilation, tracheal intubation and extubation generate aerosols in clinical practice, and to characterise any aerosols produced. In this observational study, patients scheduled to undergo elective endonasal pituitary surgery without symptoms of COVID-19 were recruited. Airway management including tracheal intubation and extubation was performed in a standard positive pressure operating room with aerosols detected using laser-based particle image velocimetry to detect larger particles, and spectrometry with continuous air sampling to detect smaller particles. A total of 482,960 data points were assessed for complete procedures in three patients. Facemask ventilation, tracheal tube insertion and cuff inflation generated small particles 30-300 times above background noise that remained suspended in airflows and spread from the patient's facial region throughout the confines of the operating theatre. Safe clinical practice of these procedures should reflect these particle profiles. This adds to data that inform decisions regarding the appropriate precautions to take in a real-world setting.
  • Item
    Thumbnail Image
    Direct Numerical Simulations of Turbulent Flow Over Various Riblet Shapes in Minimal-Span Channels
    Endrikat, S ; Modesti, D ; MacDonald, M ; Garcia-Mayoral, R ; Hutchins, N ; Chung, D (Springer Verlag, 2020-11-20)
    Riblets reduce skin-friction drag until their viscous-scaled size becomes large enough for turbulence to approach the wall, leading to the breakdown of drag-reduction. In order to investigate inertial-flow mechanisms that are responsible for the breakdown, we employ the minimal-span channel concept for cost-efficient direct numerical simulation (DNS) of rough-wall flows (MacDonald et al., J. Fluid Mech., vol. 816, 2017, pp. 5–42). This allows us to investigate six different riblet shapes and various viscous-scaled sizes for a total of 21 configurations. We verify that the small numerical domains capture all relevant physics by varying the box size and by comparing to reference data from full-span channel flow. Specifically, we find that, close to the wall in the spectral region occupied by drag-increasing Kelvin–Helmholtz rollers (García-Mayoral & Jiménez, J. Fluid Mech., vol. 678, 2011, pp. 317–347), the energy-difference relative to smooth-wall flow is not affected by the narrow domain, even though these structures have large spanwise extents. This allows us to evaluate the influence of the Kelvin–Helmholtz instability by comparing fluctuations of wall-normal and streamwise velocity, pressure and a passive scalar over riblets of different shapes and viscous-scaled sizes to those over a smooth wall. We observe that triangular riblets with a tip angle a = 30° and blades appear to support the instability, whereas triangular riblets with a = 60°–90° and trapezoidal riblets with a = 30° show little to no evidence of Kelvin–Helmholtz rollers.
  • Item
    Thumbnail Image
    The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows
    Wangsawijaya, DD ; Baidya, R ; Chung, D ; Marusic, I ; Hutchins, N (Cambridge University Press (CUP), 2020-07-10)
    We examine the behaviour of turbulent boundary layers over surfaces composed of spanwise-alternating smooth and rough strips, where the width of the strips varies such that, where is the boundary-layer thickness averaged over one spanwise wavelength of the heterogeneity. The experiments are configured to examine the influences of spanwise variation in wall shear stress over a large range. Hot-wire anemometry and particle image velocimetry (PIV) reveal that the half-wavelength governs the diameter and strength of the resulting mean secondary flows and hence the observed isovels of the mean streamwise velocity. Three possible cases are observed: limiting cases (either or), where the secondary flows are confined near the wall or near the roughness change, and intermediate cases (), where the secondary flows are space filling and at their strongest. These secondary flows, however, exhibit a time-dependent behaviour which might be masked by time averaging. Further analysis of the energy spectrogram and fluctuating flow fields obtained from PIV show that the secondary flows meander in a similar manner to that of large-scale structures occurring naturally in turbulence over smooth walls. The meandering of the secondary flows is a function of and is most prominent when.