Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Nesic, D ; Tan, Y ; Manzie, C ; Mohammadi, A ; Moase, W (IEEE, 2012-01-01)
    We summarize a unifying design approach to continuous-time extremum seeking that was recently reported by the authors. This approach is based on a feedback control paradigm that was to the best of our knowledge explicitly summarized for the first time in this form in our recent work. This paradigm covers some existing extremum seeking schemes, provides a direct link to off-line optimization and can be used as a unifying framework for design of novel extremum seeking schemes. Moreover, we show that other extremum seeking problem formulations can be interpreted using this unifying viewpoint. We believe that this unifying view will be invaluable to systematically design and analyze extremum seeking controllers in various settings.
  • Item
    Thumbnail Image
    Extremum Seeking Methods for Online Automotive Calibration
    Manzie, C ; Moase, W ; Shekhar, R ; Mohammadi, A ; Nesic, D ; Tan, Y ; Waschl, H ; Kolmanovsky, I ; Steinbuch, M ; del Re, L (Springer, 2014-01-01)
    The automotive calibration process is becoming increasingly difficult as the degrees of freedom in modern engines rises with the number of actuators. This is coupled with the desire to utilise alternative fuels to gasoline and diesel for the promise of lower CO2 levels in transportation. However, the range of fuel blends also leads to variability in the combustion properties, requiring additional sensing and calibration effort for the engine control unit (ECU). Shifting some of the calibration effort online whereby the engine controller adjusts its operation to account for the current operating conditions may be an effective alternative if the performance of the controller can be guaranteed within some performance characteristics. This tutorial chapter summarises recent developments in extremum seeking control, and investigates the potential of these methods to address some of the complexity in developing fuel-flexible controllers for automotive powertrains.