Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Online optimization of spark advance in alternative fueled engines using extremum seeking control
    Mohammadi, A ; Manzie, C ; Nesic, D (Elsevier, 2014-08-01)
    Alternative fueled engines offer greater challenges for engine control courtesy of uncertain fuel composition. This makes optimal tuning of input parameters like spark advance extremely difficult in most existing ECU architectures. This paper proposes the use of grey-box extremum seeking techniques to provide real-time optimization of the spark advance in alternative fueled engines. Since practical implementation of grey-box extremum seeking methods is typically done using digital technology, this paper takes advantage of emulation design methods to port the existing continuous-time grey-box extremum seeking methods to discrete-time frameworks. The ability and flexibility of the proposed discrete-time framework is demonstrated through simulations and in practical situation using a natural gas fueled engine.
  • Item
    Thumbnail Image
    Multi-agent source seeking via discrete-time extremum seeking control
    Khong, SZ ; Tan, Y ; Manzie, C ; Nesic, D (PERGAMON-ELSEVIER SCIENCE LTD, 2014-09-01)
    Recent developments in extremum seeking theory have established a general framework for the methodology, although the specific implementations, particularly in the context of multi-agent systems, have not been demonstrated. In this work, a group of sensor-enabled vehicles is used in the context of the extremum seeking problem using both local and global optimisation algorithms to locate the extremum of an unknown scalar field distribution. For the former, the extremum seeker exploits estimates of gradients of the field from local dithering sensor measurements collected by the mobile agents. It is assumed that a distributed coordination which ensures uniform asymptotic stability with respect to a prescribed formation of the agents is employed. An inherent advantage of the frameworks is that a broad range of nonlinear programming algorithms can be combined with a wide class of cooperative control laws to perform extreme source seeking. Semi-global practical asymptotically stable convergence to local extrema is established in the presence of field sampling noise. Subsequently, global extremum seeking with multiple agents is investigated and shown to give rise to robust practical convergence whose speed can be improved via computational parallelism. Nonconvex field distributions with local extrema can be accommodated within this global framework.