Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    The Effects of Anisotropic Surface Roughness on Turbulent Boundary-Layer Flow
    Ramani, A ; Nugroho, B ; Busse, A ; Monty, JP ; Hutchins, N ; Jelly, TO (The University of Queensland, 2020-01-01)
  • Item
    Thumbnail Image
    Reproducing AS/NZS terrain-type wind profiles in a short-fetch wind-tunnel
    Kevin, K ; Philip, J ; Monty, J ; Klewicki, J (AWES, 2018)
  • Item
    Thumbnail Image
    CFD simulations of vertical surface piercing circular cylinders and comparison against experiments
    Keough, SJ ; Stephens, DW ; Ooi, A ; Philip, J ; Monty, J (Australian fluid mechanics society, 2018)
    When predicting the susceptibility of a submarine to above water detection, it is important to consider the impact of the wake generated by the periscope(s). Computational Fluid Dynamics (CFD) tools can be used to predict the physical size and shape of the wake, which can be combined with periscope models for input into detectability prediction models. For this application, it is important that CFD predictions of the wake are accurate not only in the mean calculations, but that the physical characteristics of the wake are captured at instantaneous snapshots in time. In a previous experimental study, Keough et al. [10] presented time resolved measurements of the wake from vertical surface piercing cylinders, utilising an automated method of extracting these measurements as a function of time from video recordings of the experiment. In the present work, CFD simulations have been performed to model this experimental data set. The open source CFD software Caelus was used, with the improved Defence Science and Technology Group version of vofSolver—the multiphase volume of fluid solver. A numerical wave gauge is implemented in order to measure the free surface elevation during the simulation and this data is compared to bow wave data obtained from animations of the CFD results, using the same automated visual tracking technique utilised for the experimental measurements. Analysis of these time-resolved measurements is performed, comparing transient statistics and spectral characteristics of the CFD predictions against the experimental data.
  • Item
    Thumbnail Image
    Turbulent flow above wind-generated waves: conditional statistics and POD structures
    Kevin, K ; Philip, J ; Lee, JH ; Bhirawa, T ; Monty, J (Australian Fluid Mechanics Society, 2018)
    Large field-of-view particle image velocimetry (PIV) measurement is performed to characterise the turbulent boundary layer above evolving wind waves, which are developed over 3.5 m fetch at U∞ = 8.2 m/s. This multi-camera experiment captures a streamwise domain of 0.4 m, slightly longer than two dominant wavelength of these wind waves. Instantaneous velocity observations reveal strong flow separations on the leeward side of most dominant waves, and these events are also marked by strong vertical velocity fluctuations. The spatially-averaged velocity profile further indicates a large velocity gradient below the wave crest, which occupies a significant proportion of the boundary layer. The conditionally-averaged flow fields around larger dominant waves show that turbulence stresses are high downwind the wave crest, indicating the highly varying form of the separation events. These events are further elucidated using proper orthogonal decomposition (POD) analysis, where the first few stronger modes reveal several common attributes around the separation events.
  • Item
    Thumbnail Image
    Evolution of the Turbulent Far Wake of a Sphere
    Skidmore, GM ; Philip, J ; Monty, JP (Australasian Fluid Mechanics Society, 2018)
    The classic turbulent axisymmetric wake derivation for the spreading of wake half-width, δ, and maximum mean velocity, ūmax decay comes from arguments of a high local Reynolds number, Re, and thus negligible viscosity. If instead one assumes the local Reynolds number is small, then at some distance sufficiently far downstream the turbulent production term in the Reynolds shear stress equation will decay and a new similarity solution will arise: as shown by [2, 4]. This solution features the scaling of δ ∼ (x/d)1/2 and ūmax ∼ (x/d)−1. In other words, the turbulent wake is scaling itself at rates that match the theoretical laminar wake, yet with a local Reynolds number high enough for the turbulent fluctuations to be non-negligible. Whilst the derivation of a low Reynolds number solution is a mathematical exercise, obtaining data to confirm or deny its existence has proved difficult. No experiment has been conducted at a combination of high enough initial Reynolds number and far enough downstream to capture this transition behaviour. Furthermore, only the DNS study of Gourlay [3] has been able to achieve this behaviour; leading some researchers to question whether this decay state would occur or if the wake instead would relaminarise [7]. This paper presents results for a towed a sphere through water at a Reynolds number, based on sphere diameter, of 13000. Our experiments have been able to capture the wake transitioning from the high local Reynolds number solution to the low local Reynolds number solution via high-speed time-resolved PIV. The value of local Reynolds number that exhibits itself in the extreme far wake during the low local Reynolds number solution suggests the wake is still turbulent, supporting the claim of [2, 4].
  • Item
    Thumbnail Image
    Time Resolved Measurements of Wake Characteristics from Vertical Surface-Piercing Circular Cylinders
    Keough, SJ ; Kermonde, IL ; Amiet, A ; Philip, J ; Ooi, A ; MONTY, J ; Anderson, B (Australasian Fluid Mechanics Society, 2016)
  • Item
    No Preview Available
    Numerical investigation of the behaviour of wall shear stress in three-dimensional pulsatile stenotic flows
    Li, S ; Chin, C ; Barlis, P ; MARUSIC, I ; Ooi, A (Australasian Fluid Mechanics Society (AFMS), 2014)