Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers
    Morrill-Winter, C ; Philip, J ; Klewicki, J (CAMBRIDGE UNIV PRESS, 2017-02-25)
    A refined scaling analysis of the two-dimensional mean momentum balance (MMB) for the zero-pressure-gradient turbulent boundary layer (TBL) is presented and experimentally investigated up to high friction Reynolds numbers, $\unicode[STIX]{x1D6FF}^{+}$. For canonical boundary layers, the mean inertia, which is a function of the wall-normal distance, appears instead of the constant mean pressure gradient force in the MMB for pipes and channels. The constancy of the pressure gradient has led to theoretical treatments for pipes/channels, that are more precise than for the TBL. Elements of these analyses include the logarithmic behaviour of the mean velocity, specification of the Reynolds shear stress peak location, the square-root Reynolds number scaling for the log layer onset and a well-defined layer structure based on the balance of terms in the MMB. The present analyses evidence that similarly well-founded results also hold for turbulent boundary layers. This follows from transforming the mean inertia term in the MMB into a form that resembles that in pipes/channels, and is constant across the outer inertial region of the TBL. The physical reasoning is that the mean inertia is primarily a large-scale outer layer contribution, the ‘shape’ of which becomes invariant of $\unicode[STIX]{x1D6FF}^{+}$ with increasing $\unicode[STIX]{x1D6FF}^{+}$, and with a ‘magnitude’ that is inversely proportional to $\unicode[STIX]{x1D6FF}^{+}$. The present analyses are enabled and corroborated using recent high resolution, large Reynolds number hot-wire measurements of all the terms in the TBL MMB.
  • Item
    Thumbnail Image
    Self-similarity in the inertial region of wall turbulence
    Klewicki, J ; Philip, J ; Marusic, I ; Chauhan, K ; Morrill-Winter, C (AMER PHYSICAL SOC, 2014-12-24)
    The inverse of the von Kármán constant κ is the leading coefficient in the equation describing the logarithmic mean velocity profile in wall bounded turbulent flows. Klewicki [J. Fluid Mech. 718, 596 (2013)] connects the asymptotic value of κ with an emerging condition of dynamic self-similarity on an interior inertial domain that contains a geometrically self-similar hierarchy of scaling layers. A number of properties associated with the asymptotic value of κ are revealed. This is accomplished using a framework that retains connection to invariance properties admitted by the mean statement of dynamics. The development leads toward, but terminates short of, analytically determining a value for κ. It is shown that if adjacent layers on the hierarchy (or their adjacent positions) adhere to the same self-similarity that is analytically shown to exist between any given layer and its position, then κ≡Φ(-2)=0.381966..., where Φ=(1+√5)/2 is the golden ratio. A number of measures, derived specifically from an analysis of the mean momentum equation, are subsequently used to empirically explore the veracity and implications of κ=Φ(-2). Consistent with the differential transformations underlying an invariant form admitted by the governing mean equation, it is demonstrated that the value of κ arises from two geometric features associated with the inertial turbulent motions responsible for momentum transport. One nominally pertains to the shape of the relevant motions as quantified by their area coverage in any given wall-parallel plane, and the other pertains to the changing size of these motions in the wall-normal direction. In accord with self-similar mean dynamics, these two features remain invariant across the inertial domain. Data from direct numerical simulations and higher Reynolds number experiments are presented and discussed relative to the self-similar geometric structure indicated by the analysis, and in particular the special form of self-similarity shown to correspond to κ=Φ(-2).