Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    No Preview Available
    Coverage control of mobile sensor networks with directional sensing
    Ju, Z ; Zhang, H ; Tan, Y ; Chen, X (AMER INST MATHEMATICAL SCIENCES-AIMS, 2022-01-01)
    Control design of mobile sensors for coverage problem is addressed in this paper. The mobile sensors have non-linear dynamics and directional sensing properties which mean the sensing performance is also affected by the pointing directions of the sensors. Different from the standard optimal coverage problem where sensors are assumed to be omni-directional ones, orientation angles of the directional sensors should also be controlled, other than the position control, to achieve the coverage purpose. Considering also the non-linear dynamics of the mobile sensors, new control methodology is necessarily developed for the coverage problem with directional sensors. In the approach proposed, an innovative gradient based non-smooth motion controller is designed for the mobile sensors with unicycle dynamics. With the proposed controllers, the states of sensors will always stay in an positive invariant set where the gradient of the performance valuation function is well-defined if they are initialized within this set. Moreover, the sensors' states are proved to converge to some critical point where the gradient is zero. Simulation results are provided to illustrate the performance of the proposed coverage control strategy.
  • Item
    Thumbnail Image
    Flexible mechanical metamaterials enabling soft tactile sensors with multiple sensitivities at multiple force sensing ranges
    Mohammadi, A ; Tan, Y ; Choong, P ; Oetomo, D (NATURE PORTFOLIO, 2021-12-16)
    The majority of existing tactile sensors are designed to measure a particular range of force with a fixed sensitivity. However, some applications require tactile sensors with multiple task-relevant sensitivities at multiple ranges of force sensing. Inspired by the human tactile sensing capability, this paper proposes a novel soft tactile sensor based on mechanical metamaterials which exhibits multiple sensitivity regimes due to the step-by-step locking behaviour of its heterogenous multi-layered structure. By tuning the geometrical design parameters of the collapsible layers, each layer experiences locking behaviour under different ranges of force which provides different sensitivity of the sensor at different force magnitude. The integration of a magnetic-based transduction method with the proposed structure results in high design degrees of freedom for realising the desired contact force sensitivities and corresponding force sensing ranges. A systematic design procedure is proposed to select appropriate design parameters to produce the desired characteristics. Two example designs of the sensor structure were fabricated using widely available benchtop 3D printers and tested for their performance. The results showed the capability of the sensor in providing the desired characteristics in terms of sensitivity and force range and being realised in different shapes, sizes and number of layers in a single structure. The proposed multi-sensitivity soft tactile sensor has a great potential to be used in a wide variety of applications where different sensitivities of force measurement is required at different ranges of force magnitudes, from robotic manipulation and human-machine interaction to biomedical engineering and health-monitoring.
  • Item
    No Preview Available
    On Singular Perturbation for a Class of Discrete-Time Nonlinear Systems in the Presence of Limit Cycles of Fast Dynamics
    LIU, H ; Tan, Y ; Bacek, T ; SUN, M ; Chen, Z ; Kulic, D ; Oetomo, D (IEEE, 2022)
    This paper extends the existing singular perturbation results to a class of nonlinear discrete-time systems whose fast dynamics have limit cycles. By introducing the discrete-time reduced averaged system, the main result (Theorem 1) shows that for a given fixed time interval, the solutions of the original system can be made arbitrarily close to the solutions of the reduced averaged system and the boundary layer system. From this result, the stability properties of the original system are obtained from the stability properties of the reduced averaged system and the boundary layer system. Simulation results support the theoretical findings.
  • Item
    Thumbnail Image
    Psychometric Evaluation of Multi-Point Bone-Conducted Tactile Stimulation on the Three Bony Landmarks of the Elbow
    Mayer, RM ; Mohammadi, A ; Tan, Y ; Alici, G ; Choong, P ; Oetomo, D (IEEE, 2020-01-01)
    Sensory feedback is highly desirable in upper limb prostheses as well as in human robot interaction and other human machine interfaces. Bone conduction as sensory feedback interface is a recently studied approach showing promising properties. A combination of different feedback information is often necessary for prosthetic grasping, thus multiple feedback channels are required for effective sensory feedback. The use of multiple bone conduction stimulation sites simultaneously has not yet been studied. In this paper, the psychometric evaluation of multiple stimulation sites on the physiologically given bony landmarks on the elbow is investigated. The proposed approach is evaluated on human-subject experiments with six able-bodied subjects and one subject with transradial amputation. Vibrotactile transducers are placed on the bony landmarks of the elbow to determine the identification rate of each stimulation point separately as well as the identification rate of the number of active stimulation points for different frequencies. The outcomes show high identification rates for a frequency range from 100 to 750 Hz whilst performance deteriorates to at chance level at higher frequencies. A decreasing performance in identifying the number of active stimulation sites for an increasing number of simultaneous active transducers was observed. The obtained good performance in location identification suggests that information can be encoded via the location of the stimulation.
  • Item
    Thumbnail Image
    On the Efficiency of Haptic Based Object Identification: Determining Where to Grasp to Get the Most Distinguishing Information
    Xia, Y ; Mohammadi, A ; Tan, Y ; Chen, B ; Choong, P ; Oetomo, D (FRONTIERS MEDIA SA, 2021-07-29)
    Haptic perception is one of the key modalities in obtaining physical information of objects and in object identification. Most existing literature focused on improving the accuracy of identification algorithms with less attention paid to the efficiency. This work aims to investigate the efficiency of haptic object identification to reduce the number of grasps required to correctly identify an object out of a given object set. Thus, in a case where multiple grasps are required to characterise an object, the proposed algorithm seeks to determine where the next grasp should be on the object to obtain the most amount of distinguishing information. As such, the paper proposes the construction of the object description that preserves the association of the spatial information and the haptic information on the object. A clustering technique is employed both to construct the description of the object in a data set and for the identification process. An information gain (IG) based method is then employed to determine which pose would yield the most distinguishing information among the remaining possible candidates in the object set to improve the efficiency of the identification process. This proposed algorithm is validated experimentally. A Reflex TakkTile robotic hand with integrated joint displacement and tactile sensors is used to perform both the data collection for the dataset and the object identification procedure. The proposed IG approach was found to require a significantly lower number of grasps to identify the objects compared to a baseline approach where the decision was made by random choice of grasps.
  • Item
    Thumbnail Image
    Combining kinase inhibitors for optimally co-targeting cancer and drug escape by exploitation of drug target promiscuities.
    Chen, S ; Yang, SY ; Zeng, X ; Zhu, F ; Tan, Y ; Jiang, YY ; Chen, YZ (Wiley, 2021-02)
    Cancers resist targeted therapeutics by drug-escape signaling. Multitarget drugs co-targeting cancer and drug-escape mediators (DEMs) are clinically advantageous. DEM coverage may be expanded by drug combinations. This work evaluated to what extent the kinase DEMs (KDEMs) can be optimally co-targeted by drug combinations based on target promiscuities of individual drugs. We focused on 41 approved and 28 clinical trial small molecule kinase inhibitor drugs with available experimental kinome and clinical pharmacokinetic data. From the kinome inhibitory profiles of these drugs, drug combinations were assembled for optimally co-targeting an established cancer target (EGFR, HER2, ABL1, or MEK1) and 9-16 target-associated KDEMs at comparable potency levels as that against the cancer target. Each set of two-, three-, and four-drug combinations co-target 36-71%, 44-89%, 50-88%, and 27-55% KDEMs of EGFR, HER2, ABL1, and MEK1, respectively, compared with the 36, 33, 38, and 18% KDEMs maximally co-targeted by an existing drug or drug combination approved or clinically tested for the respective cancer. Some co-targeted KDEMs are not covered by any existing drug or drug combination. Our work suggested that novel drug combinations may be constructed for optimally co-targeting cancer and drug escape by the exploitation of drug target promiscuities.
  • Item
    Thumbnail Image
    Poly(fluorenone-co-thiophene)-based nanoparticles for two-photon fluorescence imaging in living cells and tissues
    Du, N ; Tan, Y ; Zhang, C ; Tan, C (ROYAL SOC CHEMISTRY, 2020-03-29)
    Conjugate polymer nanoparticles (CPNs) were constructed based on poly(fluorenone-co-thiophenes) (PFOTs) synthesized through a direct arylation polymerization (DArP) approach. Results demonstrate that the developed novel CPNs have potential applications in two-photon fluorescence imaging of both cells and tissues.
  • Item
    Thumbnail Image
    A biotin-guided hydrogen sulfide fluorescent probe and its application in living cell imaging.
    Zhang, C ; Zhang, J ; Xu, Z ; Zang, K ; Liu, F ; Yin, J ; Tan, Y ; Jiang, Y (Royal Society of Chemistry (RSC), 2020-09-28)
    Hydrogen sulfide (H2S), a well-known signaling molecule, exerts significant regulatory effects on the cardiovascular and nervous systems. Therefore, monitoring the metabolism of H2S offers a potential mechanism to detect various diseases. In addition, biotin is significantly used as a targeting group to detect cancer cells exclusively. In this work, a biotin-guided benzoxadizole-based fluorescent probe, NP-biotin, was developed for H2S detection and evaluated in normal liver cell (LO2) and liver cancer cell (HepG2) lines. Results reveal that NP-biotin can detect cellular H2S with high sensitivity and selectivity. Moreover, NP-biotin has been confirmed to possess the ability to target cancer cells under the guidance of the biotin group.
  • Item
    Thumbnail Image
    Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using Microneedle Arrays.
    Xie, Y ; Shao, R ; Lin, Y ; Wang, C ; Tan, Y ; Xie, W ; Sun, S (MDPI AG, 2021-06-02)
    In this paper, we prepared patches that were composed of a degradable microneedle (MN) array with a soft backing provided for the skin tissue. We then performed a transdermal delivery of anti-obesity drugs to evaluate the effectiveness of β3 adrenergic receptor CL316243 in obesity treatment in overweight mice induced by a high-fat diet. Eighty male National Institutes of Health (NIH) mice were randomly divided into four obese groups or the control group. The obesity groups were given a high-fat diet for 15-18 weeks to establish an obese model. Afterward, the obese groups were divided into the following four groups: the control group, the unloaded MN group, the CL-316243 MN group, and the injection group. For the injection group, the group of mice was injected subcutaneously with CL316243 (1 mg/(kg·day)) for 15 days. Furthermore, the CL-316243 MN group was given a lower dose (0.1 mg/(kg·day)) for 15 days. After weighing the mice, we used Western blotting to detect the expression of uncoupling protein 1 (UCP1) in the adipose tissue around the mouse viscera. The results stated that the weight of the CL-316243 MN group and the injection group dropped, and the UCP1 protein expression of brown adipose tissue (BAT) significantly increased. The results demonstrated the β3 adrenergic receptor agonist CL316243 could be carried into the body through MN, and the dose applied was considerably smaller than the injection dose. The reason for this may arise from the CL-316243 being delivered by MN arrays to subcutaneous adipose tissue more efficiently, with an even distribution, compared to that of the injection dose. This technique provides a new and feasible way to treat obesity more effectively.
  • Item
    No Preview Available
    Databases for facilitating mechanistic investigations of traditional Chinese medicines against COVID-19.
    Jiang, S ; Cui, Q ; Ni, B ; Chen, Y ; Tan, Y ; Chen, W ; Chen, YZ (Elsevier BV, 2020-09)