Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights
    Ewing, KA ; Begg, RK ; Galea, MP ; Lee, PVS (SAGE PUBLICATIONS INC, 2016-07)
    BACKGROUND: Anterior cruciate ligament (ACL) injuries commonly occur during landing maneuvers. Prophylactic knee braces were introduced to reduce the risk of ACL injuries, but their effectiveness is debated. HYPOTHESES: We hypothesized that bracing would improve biomechanical factors previously related to the risk of ACL injuries, such as increased hip and knee flexion angles at initial contact and at peak vertical ground-reaction force (GRF), increased ankle plantar flexion angles at initial contact, decreased peak GRFs, and decreased peak knee extension moment. We also hypothesized that bracing would increase the negative power and work of the hip joint and would decrease the negative power and work of the knee and ankle joints. STUDY DESIGN: Controlled laboratory study. METHODS: Three-dimensional motion and force plate data were collected from 8 female and 7 male recreational athletes performing double-leg drop landings from 0.30 m and 0.60 m with and without a prophylactic knee brace. GRFs, joint angles, moments, power, and work were calculated for each athlete with and without a knee brace. RESULTS: Prophylactic knee bracing increased the hip flexion angle at peak GRF by 5.56° (P < .001), knee flexion angle at peak GRF by 4.75° (P = .001), and peak hip extension moment by 0.44 N·m/kg (P < .001). Bracing also increased the peak hip negative power by 4.89 W/kg (P = .002) and hip negative work by 0.14 J/kg (P = .001) but did not result in significant differences in the energetics of the knee and ankle. No differences in peak GRFs and peak knee extension moment were observed with bracing. CONCLUSION: The application of a prophylactic knee brace resulted in improvements in important biomechanical factors associated with the risk of ACL injuries. CLINICAL RELEVANCE: Prophylactic knee braces may help reduce the risk of noncontact knee injuries in recreational and professional athletes while playing sports. Further studies should investigate different types of prophylactic knee braces in conjunction with existing training interventions so that the sports medicine community can better assess the effectiveness of prophylactic knee bracing.
  • Item
    Thumbnail Image
    Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing
    Ewing, KA ; Fernandez, JW ; Begg, RK ; Galea, MP ; Lee, PVS (ELSEVIER SCI LTD, 2016-10-03)
    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements.