Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 133
  • Item
    Thumbnail Image
    Effect Of Arm Deweighting Using End-Effector Based Robotic Devices On Muscle Activity.
    Fong, J ; Crocher, V ; Haddara, R ; Ackland, D ; Galea, M ; Tan, Y ; Oetomo, D (IEEE, 2018)
    Deweighting of the limb is commonly performed for patients with a neurological injury, such as stroke, as it allows these patients with limited muscle activity to perform movements. Deweighting has been implemented in exoskeletons and other multi-contact devices, but not on an end-effector based device with single contact point between the assisting robot and the human limb being assisted. This study inves-tigates the effects of deweighting using an end-effector based device on healthy subjects. The muscle activity of five subjects was measured in both static postures and dynamic movements. The results indicate a decrease in the activity of muscles which typically act against gravity - such as the anterior deltoid and the biceps brachii - but also suggest an increase in activity in muscles which act with gravity - such as the posterior deltoid and the lateral triceps. This can be explained by both the change in required muscle-generated torques and a conscious change in approach by the participants. These observations have implications for neurorehabilitation, particularly with respect to the muscle activation patterns which are trained through rehabilitation exercises.
  • Item
    Thumbnail Image
    Averaging for nonlinear systems on Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; Dower, PM (IEEE, 2013)
    This paper provides a derivation of the averaging methods for nonlinear time-varying dynamical systems defined on Riemannian manifolds. We extend the results on ℝ n to Riemannian manifolds by employing the language of differential geometry.
  • Item
    Thumbnail Image
    Control oriented modeling of turbocharged (TC) spark ignition (SI) engine
    Sharma, R ; Nesic, D ; Manzie, C (SAE International, 2009-01-01)
  • Item
    Thumbnail Image
    Idle speed control using linear time varying model predictive control and discrete time approximations
    Sharma, R ; Nesic, D ; Manzie, C (IEEE, 2010-01-01)
    This paper addresses the problem of idle speed control of hydrogen fueled internal combustion engine (H2ICE) using model predictive control (MPC) and sampled data control (SDC) theories. In the first step, results from SDC theory and a version of MPC are collectively employed to obtain a rigorously developed new generic control strategy. Here, a controller, based on a family of approximate discrete time models, is designed within a previously proposed framework to have guaranteed practical asymptotic stability of the exact (unknown) discrete time model. Controller design, accomplished using MPC theory, is facilitated by successive online linearizations of the nonlinear discrete time model at each sampling instant. In the second step, the technique is implemented in the idle speed control of hydrogen internal combustion engine (H2ICE). Various conditions under which this theory can be implemented are presented and their validity for idle speed control problem are discussed. Simulations are presented to illustrate the effectiveness of the control scheme.
  • Item
    Thumbnail Image
    Real time model predictive idle speed control of ultra-lean burn engines: Experimental results
    Sharma, R ; Dennis, P ; Manzie, C ; Nešić, D ; Brear, MJ (IEEE, 2011-01-01)
  • Item
    Thumbnail Image
    Model Reduction of Automotive Engines using Perturbation Theory
    Sharma, R ; Nesic, D ; Manzie, C (IEEE, 2009-01-01)
    In this paper, a new constructive and versatile procedure to systematically reduce the order of control oriented engine models is presented. The technique is governed by the identification of time scale separation within the dynamics of various engine state variables and hence makes extensive use of the perturbation theory. On the basis of the dynamic characteristics and the geometry of engines, two methods for model reduction are proposed. Method 1 involves collective use of the regular and singular perturbation theories to eliminate temperature dynamics and approximate them with their quasi-steady state values, while Method 2 deals with the elimination of fast pressures. The result is a library of engine models which are associated with each other on a sound theoretical basis and simultaneously allow sufficient flexibility in terms of the reduced order modeling of a variety of engines. Different assumptions under which this model reduction is justified are presented and their implications are discussed.
  • Item
  • Item
  • Item
    Thumbnail Image
    Point-wise extremum seeking control scheme under repeatable control environment
    Tan, Y ; Mareels, I ; Nešić, D ; Xu, JX (IEEE, 2007-01-01)
  • Item
    Thumbnail Image
    On stability properties of nonlinear time-varying systems by semi-definite time-varying Lyapunov can
    Wang, ZM ; Tan, Y ; Wang, G ; Nesic, D (IFAC, 2008-12-01)
    Stability properties (uniform stability/uniform asymptotic stability) of nonlinear time-varying systems are explored using positive semi-definite time-varying Lyapunov candidates whose derivative along trajectories is either non-positive or negative semi-definite. Once these positive semi-definite time-varying Lyapunov candidates are available, conditional stability properties on some specific sets can be used to ensure stability properties ( unform stability and unform asymptotic stability) of nonlinear time-varying systems.