 Mechanical Engineering  Research Publications
Mechanical Engineering  Research Publications
Permanent URI for this collection
Search Results
Now showing
1  7 of 7

ItemA wallwake model for the turbulence structure of boundary layers. Part 2. Further experimental supportMarusic, I. ; Perry, A. E. (Cambridge University Press, 1995)In Part 1 an extension of the attached eddy hypothesis was developed and applied to equilibrium pressure gradient turbulent boundary layers. In this paper the formulation is applied to data measured by the authors from nonequilibrium layers and agreement with the extended theory is encouraging. Also power spectra of the Reynolds stresses as developed from the extended theory compare favourably with experiment. The experimental data include a check of coneangle effects by using a flying hot wire.

ItemA wallwake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesisPerry, A. E. ; Marusic, I. (Cambridge University Press, 1995)The attached eddy hypothesis developed for zero pressure gradient boundary layers and for pipe flow is extended here to boundary layers with arbitary streamwise pressure gradients, both favourable and adverse. It is found that in order to obtain the correct quantitative results for all components of the Reynolds stresses, two basiv types of eddy structure geometries are required. The first type, called typeA, is interpreted to give a 'wall structure' and the second, referred to as typeB, gives a 'wake structure'. This is an analogy with the conventional mean velocity formulation of Coles where the velocity is decomposed into a law of the wall and a law of the wake.If the above mean velocity formulation is accepted, then in principle, once the eddy geometries are fixed for the two eddy types, all Reynolds stresses and associated spectra contributed from the attached eddies can be computed without any further empirical constants. This is done by using the momentum equation and certain convolution integrals developed here based on the attached eddy hypothesis. The theory is developed using data from equilibrium and quasiequilibrium flows. In Part 2 the authors' nonequilibrium data are used.

ItemWall turbulence closure based on classical similarity laws and the attached eddy hypothesisPerry, A. E. ; Marusic, I. ; Li, J. D. ( 1994)A new look at the closure problem of turbulent boundary layers is taken here using recently derived analytical expressions for the shear stress distributions. These expressions are based on logarithmic law of the wall and law of the wake formulation of Coles [J. Fluid Mech. 1, 191 (1956)] with the mean continuity and the mean momentum differential and integral equations. The concept of equilibrium layers of Clauser [Adv. Mech. 4, 1 (1956)] is extended and using similar ideas as Rotta [Prog. Aeronaut. Sci. 2, 1(1962)] for selfsimilarity, a closure scheme is proposed for layers developing in arbitrary pressure gradients for the case where the streamwise derivative of the Coles wake factor is not too large. For a given flow case, this Coles wake condition can be tested with internal consistency checks. The mathematical framework is most suitable for incorporating Townsend’s attached eddy hypothesis as recently developed by Perry, Li, and Marusic [Phils. Trans. R. Soc. London. Ser. A 336, 67 (1991)] for closure. This gives an opportunity to incorporate coherent structure concepts into closure schemes. Possible ways of handling the difficult case where the streamwise derivative of the Coles wake factor is significant are discussed.

ItemTowards a closure scheme for turbulent boundary layers using the attached eddy hypothesisPerry, A. E. ; Li, J. D. ; Marusic, I. (Royal Society Publishing, 1991)In this paper, an attempt is made to formulate a closure hypothesis for adverse pressure gradient turbulent layers using the attached eddy hypothesis of Townsend and Perry & Chong, which was developed originally for zero pressure gradient layers and parallel duct flows.To the authors’ knowledge, this work represents one of the few attempts to use coherent structure ideas in the formulation of a closure scheme. At present this closure scheme is primitive and many of the assumptions are of an arbituary nature but the analysis at least points out where the difficulties are and which areas need more work.

ItemSimilarity law for the streamwise turbulence intensity in zeropressuregradient turbulent boundary layersMarusic, I. ; Uddin, A. K. M. ; Perry, A. E. ( 1997)A similarity relationship is proposed to describe the streamwise broadbandturbulence intensity in a zeropressuregradient boundary layer. The formulation is applicable to the entire region of the flow beyond the viscous buffer zone and is based on the attached eddy hypothesis, the Reynoldsnumbersimilarity hypothesis and the assumed existence of Kolmogorov eddies with a universal inertial subrange. Experimental data of the authors and those from various published works covering a large Reynolds number range are investigated in light of this formulation.

ItemOn the validity of Taylor's hypothesis in wall turbulenceUddin, A. K. Mesbah ; Perry, A. E. ; MARUSIC, IVAN ( 1997)The validity of Taylor’s hypothesis of frozen turbulence has been the issue of much debate, especially when applied to flows with strong shear and high turbulence intensities. In the past, Taylor’s hypothesis was used by various researchers for the quantitative interpretation of the structure angle of the eddies on the basis of doublevelocity correlations (eg. Alving et al. [1]) or velocitywall pressure or velocitywall shear stress correlations (e.g. Brown & Thomas [2] , Rajagopalan & Antonia [6]. In light of the ambiguity associated with Taylor’s hypothesis, naturally, there are resultant uncertainties in terms of the measured structure angle. Subsequently there is a need to investigate how do these uncertainties effect the structure angle measurements and as well as to examine the validity of Taylor’s hypothesis when applied to twopoint doublevelocity correlation measurements in an anisotropic shear flow.

ItemNew evolution equations for turbulent boundary layers in arbitrary pressure gradientsPerry, A. E. ; Marusic, I. ; Jones, M. B. (Indian Academy of Sciences, 1998)A new approach to the classical closure problem for turbulent boundary layers is presented. This involves using the wellknown meanflow scaling laws such as Prandtl's law of the wall and the law of the wake of Coles together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general nonequilibrium case are identified and are used for establishing a framework for closure. Initially, closure is done here empirically from the data but the framework is most suitable for applying the attached eddy hypothesis in future work. How this might be done is indicated here.