Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Global and local aspects of entrainment in temporal plumes
    Krug, D ; Chung, D ; Philip, J ; Marusic, I (CAMBRIDGE UNIV PRESS, 2017-02-10)
    To date, the understanding of the role buoyancy plays in the entrainment process in unstable configurations such as turbulent plumes remains incomplete. Towards addressing this question, we set up a flow in which a plume evolves in time instead of space. We demonstrate that the temporal problem is equivalent to a spatial plume in a strong coflow and address in detail how the temporal plume can be realized via direct numerical simulation. Using numerical data of plume simulations up to $Re_{\unicode[STIX]{x1D706}}\approx 100$, we show that the entrainment coefficient can be determined consistently using a global entrainment analysis in an integral framework as well as via a local approach. The latter is based on a study of the local propagation of the turbulent/non-turbulent interface relative to the fluid. Locally, this process is dominated by small-scale diffusion which is amplified by interface convolutions such that the total entrained flux is independent of viscosity. Further, we identify a direct buoyancy contribution to entrainment by baroclinic torque, which accounts for 8 %–12 % of the entrained flux locally, comparable to the 15 % buoyancy contribution at the integral level. It appears that the baroclinic torque is a mechanism that might explain higher values of the entrainment coefficient in spatial plumes compared with jets.
  • Item
    Thumbnail Image
    Characteristics of the entrainment velocity in a developing wake
    Philip, J ; Bermejo-Moreno, I ; Chung, D ; MARUSIC, I (International Symposium on Turbulence and Shear Flow Phenomena, 2015)