Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    An ice thermal storage computer model
    CHAICHANA, C ; CHARTERS, WWS ; AYE, L (Elsevier, 2001-12-01)
    In hot humid countries such as Thailand, air conditioning plant is installed in most commercial and industrial buildings. A conventional air conditioning system, which is normally operated when cooling is required, is the most favored option. Ice thermal storage on a large scale, used to provide a cool reservoir for use in peak periods, is however an attractive financial option for large buildings to supply coolness. There are two means of operating ice thermal storage systems, namely full storage and partial storage. In this paper, a computer model has been developed in order to compare energy use in conventional air cooling systems and ice thermal storage systems. Under Thailand electricity tariff rates, the results from the simulations show that the full ice thermal storage can save up to 55% of the electricity cost required for cooling per month when compared with the conventional system. It is also found that using full storage option can reduce the total energy consumption by 5% for the selected building.
  • Item
    Thumbnail Image
    Benefits of cool thermal storage in Thailand
    CHAICHANA, C ; CHARTERS, W ; AYE, L (RERIC, 2001-06-01)
    The use of thermal storage on a large to provide a cool reservoir for use in peak periods is an attractive financial option for large hotels, hospitals or office blocks. This enables the refrigeration plant to operate more effectively and to be completely or partially shut down during peak periods when the demand can be met in full or in part from the cool store. In this paper an overview is given of the power generation capacity and costing structure in Thailand and a typical load profile is presented to illustrate the advantages to be gained by shifting plant operation to off-peak periods. Specific load calculations have been utilized to demonstrate the cost savings possible by incorporation of such a cool thermal storage system into a traditional refrigeration and air conditioning plant for a major hotel complex.
  • Item
    Thumbnail Image
    Electrical and engine driven heat pumps for effective utilisation of renew-able energy resources
    Aye, L ; Charters, WWS (PERGAMON-ELSEVIER SCIENCE LTD, 2003-07)
  • Item
    Thumbnail Image
    Effects of changing aspect ratio through a wind tunnel contraction
    Callan, J. ; Marusic, I. (American Institute of Aeronautics & Astronautics, 2001)
    No abstract.
  • Item
    Thumbnail Image
    On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients
    Perry, A. E. ; Marusic, I. ; Jones, M. B. (Cambridge University Press, 2002)
    A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such asthe log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.
  • Item
    Thumbnail Image
    Experimental study of wall boundary conditions for large-eddy simulation
    Marusic, I. ; Kunkel, G. J. ; Porte-Agel, F. ( 2001)
    An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at R = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wallnormal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and x-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with `outer-flow' scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.
  • Item
    Thumbnail Image
    Evolution and structure of sink-flow turbulent boundary layers
    Jones, M. B. ; MARUSIC, IVAN ; Perry, A. E. ( 2001)
    An experimental and theoretical investigation of turbulent boundary layers developing in a sink-flow pressure gradient was undertaken. Three flow cases were studied, corresponding to different acceleration strengths. Mean-flow measurements were taken for all three cases, while Reynolds stresses and spectra measurements were made for two of the flow cases. In this study attention was focused on the evolution of the layers to an equilibrium turbulent state. All the layers were found to attain a state very close to precise equilibrium. This gave equilibrium sink flow data at higher Reynolds numbers than in previous experiments. The mean velocity profiles were found to collapse onto the conventional logarithmic law of the wall. However, for profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was observed near the buffer region, whereas the mean velocity profiles measured with a normal hot wire did not exhibit this deviation from the logarithmic law. As the layers approached equilibrium, the mean velocity profiles were found to approach the pure wall profile and for the highest level of acceleration Π was very close to zero, where Π is the Coles wake factor. This supports the proposition of Coles (1957), that the equilibrium sink flow corresponds to pure wall flow. Particular interest was also given to the evolutionary stages of the boundary layers, in order to test and further develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative agreement with the experimental results was found after slight modification of their original closure equation.
  • Item
    Thumbnail Image
    Characteristics of vortex packets in turbulent boundary layers
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. ( 2003)
    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise–spanwise planes of a turbulent boundary layer at Ret =1060 (Re? =2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+ =92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times -uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to -uw while occupying only 4% of the total area at z+ =92. At z+ =150, these patches occupied 4.5% of the total area while contributing 25% to -uw. Beyond the log layer (z+ =198 and 530), the spatial organization into packets is seen to break down.
  • Item
    Thumbnail Image
    Streamwise turbulence intensity formulation for flat-plate boundary layers
    Marusic, I ; Kunkel, GJ (AMER INST PHYSICS, 2003-08)
    A similarity formulation is proposed to describe the streamwise turbulence intensity across the entire smooth-wall zero-pressure-gradient turbulent boundary layer. The formulation is an extension of the Marusic, Uddin, and Perry [Phys. Fluids 9, 3718 (1997)] formulation that was restricted to the outer region of the boundary layer, including the logarithmic region. The new formulation is found to agree very well with experimental data over a large range of Reynolds numbers varying from laboratory to atmospheric flows. The formulation is founded on physical arguments based on the attached eddy hypothesis, and suggests that the boundary layer changes significantly with Reynolds number, with an outer flow influence felt all the way down to the viscous sublayer. The formulation may also be used to explain why the empirical mixed scaling of DeGraaff and Eaton [J. Fluid Mech. 422, 319 (2000)] appears to work.
  • Item
    Thumbnail Image
    Turbulence intensity similarity formulations for wall-bounded flows
    MARUSIC, I ; Kunkel, GJ ; Zhao, R ; Smits, AJ (CIMNE - International Center for Numical Methods in Engineering, 2004)