Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Some predictions of the attached eddy model for a high Reynolds number boundary layer
    Nickels, T. B. ; Marusic, I. ; Hafez, S. ; Hutchins, N. ; Chong, M. S. (Royal Society Publishing, 2007-01)
    Many flows of practical interest occur at high Reynolds number, at which the flow inmost of the boundary layer is turbulent, showing apparently random fluctuations invelocity across a wide range of scales. The range of scales over which these fluctuationsoccur increases with the Reynolds number and hence high Reynolds number flows aredifficult to compute or predict. In this paper, we discuss the structure of these flows anddescribe a physical model, based on the attached eddy hypothesis, which makespredictions for the statistical properties of these flows and their variation with Reynoldsnumber. The predictions are shown to compare well with the results from recentexperiments in a new purpose-built high Reynolds number facility. The model is alsoshown to provide a clear physical explanation for the trends in the data. The limits ofapplicability of the model are also discussed.
  • Item
    Thumbnail Image
    Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
    Ganapathisubramani, B. ; Hutchins, N. ; Hambleton, W. T. ; Longmire, E. K. ; Marusic, I. (Cambridge University Press, 2005)
    Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at 45◦ and 135◦ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number (Reτ ∼ 1100). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outerwake region. Both streamwise–streamwise (Ruu) and streamwise–wall-normal (Ruw)correlations are significant for streamwise displacements of more than 1500 wallunits. Zero crossing data for the streamwise fluctuating component u reveal that streamwise strips between zero crossings of 1500 wall units or longer occur morefrequently for negative u than positive u, suggesting that long streamwise correlations in Ruu are dominated by slower streamwise structures. Additional analysis of Rwwcorrelations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur withinpackets of angled hairpin vortices. At a wall-normal location outside of the log region (z/δ =0.5), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data revealgood agreement with the streamwise–spanwise plane. Ruu in the 45◦ plane is more elongated along the in-plane wall-normal direction than in the 135◦ plane, which isconsistent with the presence of hairpin packets with a low-speed region lifting away from the wall.
  • Item
    Thumbnail Image
    Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer
    Hambleton, W. T. ; Hutchins, N. ; Marusic, I. (Cambridge University Press, 2006)
    Stereoscopic particle image velocimetry (PIV) measurements were taken simultaneously in streamwise–spanwise and streamwise–wall-normal planes in a zero pressure-gradient turbulent boundary layer over a flat plate. Polarization techniques were employed to allow PIV to be taken in both planes simultaneously. Image preprocessing techniques were used to improve the quality of data near the line of intersection of the planes. Linear stochastic estimation was performed on these data, revealing the streamwise, spanwise, and wall-normal extent of swirl events primarily near the top of the log region of the boundary layer. Swirl events with rotation consistent with the mean vorticity are found to have a large footprint inthe lower limit of the log region whereas swirls with opposite-signed vorticity are found to have little influence lower in the boundary layer. These long-time-averaged statistics contain features that are consistent with the hairpin packet model (or its kinematic equivalent). This model also seems to provide a reasonable description of many instantaneous events involving large-scale coherence, where long regions of streamwise momentum deficit are surrounded by vortex cores.
  • Item
    Thumbnail Image
    Experimental investigation of vortex properties in a turbulent boundary layer
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. (American Institute of Physics, 2006)
    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Ret =1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45 degrees with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.
  • Item
    Thumbnail Image
    Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers
    Hutchins, N. ; Hambleton, W. T. ; MARUSIC, IVAN (Cambridge University Press, 2005)
    This work can be viewed as a reprise of Head & Bandyopadhyay’s (J. Fluid Mech. vol. 107, 1981, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45° and 135° to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Reτ ≈690–2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135° plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135° plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall–wake description of turbulent boundary layers.
  • Item
    Thumbnail Image
    Dual-plane PIV technique to determine complete velocity gradient tensor in a turbulent boundary layer
    Ganapathisubramani, B. ; Longmire, E. K. ; Marusic, I. ; Pothos, S. ( 2005)
    Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (ReT ~ 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35° to the streamwise-spanwise plane with a resulting projected eddy inclination of 43° in the streamwise-wall-normal plane.
  • Item
    Thumbnail Image
    Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
    Hutchins, N. ; MARUSIC, IVAN (Cambridge University Press, 2007)
    A regime of very long meandering positive and negative streamwise velocity fluctuations, that we term ‘superstructures’, are found to exist in the log and lower wake regions of turbulent boundary layers. Measurements are made with a spanwise rake of 10 hot-wires in two separate facilities (spanning more than a decade of Ret) and are compared with existing PIV and DNS results. In all cases, we note evidence of a large-scale stripiness in the streamwise velocity fluctuations. The length of these regions can commonly exceed 20d. Similar length scales have been previously reported for pipes and DNS channel flows. It is suggested that the true length of these features is masked from single-point statistics (such as autocorrelations and spectra) by a spanwise meandering tendency. Support for this conjecture is offered through the study of a synthetic flow composed only of sinusoidally meandering elongated low- and high-speed regions. From detailed maps of one-dimensional spectra, it is found that the contribution to the streamwise turbulence intensities associated with the superstructures appears to be increasingly significant with Reynolds number, and scales with outer length variables (d). Importantly, the superstructure maintains a presence or footprint in the near-wall region, seeming to modulate or influence the near-wall cycle.
  • Item
    Thumbnail Image
    Assessment of dual plane PIV measurements in wall turbulence using DNS data
    Saikrishnan, Neelakantan ; MARUSIC, IVAN ; Longmire, Ellen K. (Springer Verlag, 2006)
    Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z+= 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Reτ = 1,160, while the DNS data are extr acted from a channel flow at Reτ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.
  • Item
    Thumbnail Image
    Evidence of the k1-1 law in a high-Reynolds-number turbulent boundary layer
    Nickels, T. B. ; Marusic, I. ; Hafez, S. ; Chong, M. S. (The American Physical Society, 2005)
    Dimensional analysis and overlap arguments lead to a prediction of a region in the streamwise velocityspectrum of wall-bounded turbulent flows in which the dependence on the streamwise wave number, k1, isgiven by k 1-1 . Some recent experiments have questioned the existence of this region. In this Letter,experimental spectra are presented which support the existence of the k 1-1 law in a high-Reynolds-numberboundary layer. This Letter presents the experimental results and discusses the theoretical and experimentalissues involved in examining the existence of the k 1-1 law and the reasons why it has proved so elusive.