Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    Effects of varied roughness coverage area on drag in a turbulent boundary layer using numerical simulations
    Nugroho, S ; Nugroho, B ; Fusil, E ; Chin, R (PERGAMON-ELSEVIER SCIENCE LTD, 2023-11-01)
  • Item
    Thumbnail Image
    Simulation of large-eddy-break-up device (LEBU) in a moderate Reynolds number turbulent boundary layer
    Chin, C ; Monty, J ; HUTCHINS, N ; Ooi, A ; Orlu, R ; Schlatter, P (Springer, 2016-08-11)
    A well-resolved large eddy simulation (LES) of a large-eddy break-up (LEBU) device in a spatially evolving turbulent boundary layer is performed with, Reynolds number, based on free-stream velocity and momentum-loss thickness, of R e θ ≈ 4300. The implementation of the LEBU is via an immersed boundary method. The LEBU is positioned at a wall-normal distance of 0.8 δ (δ denoting the local boundary layer thickness at the location of the LEBU) from the wall. The LEBU acts to delay the growth of the turbulent boundary layer and produces global skin friction reduction beyond 180δ downstream of the LEBU, with a peak local skin friction reduction of approximately 12 %. However, no net drag reduction is found when accounting for the device drag of the LEBU in accordance with the towing tank experiments by Sahlin et al. (Phys. Fluids 31, 2814, 1988). Further investigation is performed on the interactions of high and low momentum bulges with the LEBU and the corresponding output is analysed, showing a ‘break-up’ of these large momentum bulges downstream of the LEBU. In addition, results from the spanwise energy spectra show consistent reduction in energy at spanwise length scales for λ+z>1000 independent of streamwise and wall-normal location when compared to the corresponding turbulent boundary layer without LEBU.
  • Item
    Thumbnail Image
    A Theoretical Review of Rotating Detonation Engines
    J. Shaw, I ; A.C. Kildare, J ; J. Evans, M ; Chinnici, A ; A.M. Sparks, C ; N.H. Rubaiyat, S ; C. Chin, R ; R. Medwell, P (IntechOpen, 2021-01-14)
    Rotating detonation engines are a novel device for generating thrust from combustion, in a highly efficient, yet mechanically simple form. This chapter presents a detailed literature review of rotating detonation engines. Particular focus is placed on the theoretical aspects and the fundamental operating principles of these engines. The review covers both experimental and computational studies, in order to identify gaps in current understanding. This will allow the identification of future work that is required to further develop rotating detonation engines.
  • Item
    Thumbnail Image
    Transitional turbulent flow in a stenosed coronary artery with a physiological pulsatile flow
    Freidoonimehr, N ; Arjomandi, M ; Sedaghatizadeh, N ; Chin, R ; Zander, A (Wiley, 2020-07)
    The turbulence in the blood flow, caused by plaque deposition on the arterial wall, increases by the combined effect of the complex plaque geometries and the pulsatile blood flow. The correlation between the plaque geometry, the pulsatile inlet flow and the induced turbulence in a constricted artery is investigated in this study. Pressure drop, flow velocity and wall shear stress are determined for stenosed coronary artery models with three different degrees of asymmetric stenosis and for different heart working conditions. A Computational Fluid Dynamics model, validated against experimental data published in the literature, was developed to simulate the blood pulsatile flow inside a stenosed coronary artery model. The transitional flow behaviour was quantified by investigation of the changes in the turbulence kinetic energy. It was shown that the separation starts from the side of the asymmetric stenosis and spreads to its opposite side further downstream. The results suggest that there is a high risk of the formation of a secondary stenosis at a downstream distance equal to 10 times of the artery diameter at the side and bottom regions of the first stenosis due to the existence of the recirculation zones and low shear stresses. Finally, a stenosed patient‐specific coronary artery model was employed to illustrate the applicability of the obtained results for real geometry models. The results of this study provide a good prediction of pressure drop and blood flow rate, which can be applied in the investigation of the heart muscle workout and the required heart power.
  • Item
    Thumbnail Image
    Backflow events under the effect of secondary flow of Prandtl's first kind
    Chin, RC ; Vinuesa, R ; Orlu, R ; Cardesa, J ; Noorani, A ; Chong, MS ; Schlatter, P (American Physical Society, 2020-07-30)
    A study of the backflow events in the flow through a toroidal pipe at friction Reynolds number Reτ ≈ 650 is performed and compared with the results in a straight turbulent pipe flow at Reτ ≈ 500. The statistics and topological properties of the backflow events are analysed and discussed. Conditionally averaged flow fields in the vicinity of the backflow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the azimuthal wall-shear stress when compared to the pipe flow. In the region around the backflow events, critical points are observed. The comparison between the toroidal pipe and its straight counterpart also shows fewer backflow events and critical points in the torus. This is attributed to the secondary flow of Prandtl's first kind present in the toroidal pipe, which is responsible for the convection of momentum from the inner to the outer bend through the core of the pipe, and back from outer bend to the inner bend along the azimuthal direction. These results indicate that backflow events and critical points are genuine features of wall-bounded turbulence, and are not artefacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.
  • Item
    Thumbnail Image
    Low Reynolds number turbulent swirling pipe flows
    Chin, CR ; Philip, J (Australian fluid mechanics society, 2019)
    A direct numerical simulation of a swirling pipe flow is performed to investigate the effects of swirl on turbulence statistics. The swirling motion is imposed via a constant azimuthal body force coupled with a body force in the axial direction that drives the flow. The friction Reynolds number Reτ ≈ 170 with a pipe length of 8πδ (where δ is the pipe radius). The simulations are performed at two swirl numbers S = 0.01 and 0.13. At the lower swirl number, the mean statistics appear to collapse well with non-swirling pipe flows. At the higher swirl number, the axial, radial and azimuthal turbulence intensities show a higher value in the outer region, whereas the axial turbulence intensity decreases closer to the wall. The higher swirl number simulation shows that there is an increase in drag, possibly due to the swirl imposing an increase in axial flow resistance. This is accompanied by an increase in the inertial region with increased swirl. We also show that similar to the total axial stress, the total azimuthal stress when normalised by the azimuthal friction velocity follows decreases linearly from wall to the pipe centerline.
  • Item
    Thumbnail Image
    Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows
    Chin, C ; Philip, J ; Klewicki, J ; Ooi, A ; Marusic, I (CAMBRIDGE UNIV PRESS, 2014-10)
    Abstract A detailed analysis of the ‘turbulent inertia’ (TI) term (the wall-normal gradient of the Reynolds shear stress,$\mathrm{d} \langle -uv\rangle /\mathrm{d} y $), in the axial mean momentum equation is presented for turbulent pipe flows at friction Reynolds numbers$\delta ^{+} \approx 500$, 1000 and 2000 using direct numerical simulation. Two different decompositions for TI are employed to further understand the mean structure of wall turbulence. In the first, the TI term is decomposed into the sum of two velocity–vorticity correlations ($\langle v \omega _z \rangle + \langle - w \omega _y \rangle $) and their co-spectra, which we interpret as an advective transport (vorticity dispersion) contribution and a change-of-scale effect (associated with the mechanism of vorticity stretching and reorientation). In the second decomposition, TI is equivalently represented as the wall-normal gradient of the Reynolds shear stress co-spectra, which serves to clarify the accelerative or decelerative effects associated with turbulent motions at different scales. The results show that the inner-normalised position,$y_m^{+}$, where the TI profile crosses zero, as well as the beginning of the logarithmic region of the wall turbulent flows (where the viscous force is leading order) move outwards in unison with increasing Reynolds number as$y_m^{+} \sim \sqrt{\delta ^{+}}$because the eddies located close to$y_m^{+}$are influenced by large-scale accelerating motions of the type$\langle - w \omega _y \rangle $related to the change-of-scale effect (due to vorticity stretching). These large-scale motions of$O(\delta ^{+})$gain a spectrum of larger length scales with increasing$\delta ^{+}$and are related to the emergence of a secondary peak in the$-uv$co-spectra. With increasing Reynolds number, the influence of the$O(\delta ^{+})$motions promotes viscosity to act over increasingly longer times, thereby increasing the$y^{+}$extent over which the mean viscous force retains leading order. Furthermore, the TI decompositions show that the$\langle v \omega _z \rangle $motions (advective transport and/or dispersion of vorticity) are the dominant mechanism in and above the log region, whereas$\langle - w \omega _y \rangle $motions (vorticity stretching and/or reorientation) are most significant below the log region. The motions associated with$\langle - w \omega _y \rangle $predominantly underlie accelerations, whereas$\langle v \omega _z \rangle $primarily contribute to decelerations. Finally, a description of the structure of wall turbulence deduced from the present analysis and our physical interpretation is presented, and is shown to be consistent with previous flow visualisation studies.
  • Item
    No Preview Available
    Numerical investigation of the behaviour of wall shear stress in three-dimensional pulsatile stenotic flows
    Li, S ; Chin, C ; Barlis, P ; MARUSIC, I ; Ooi, A (Australasian Fluid Mechanics Society (AFMS), 2014)
  • Item
    Thumbnail Image
    An investigation of channel flow with a smooth air-water interface
    Madad, R ; Elsnab, J ; Chin, C ; Klewicki, J ; Marusic, I (Springer Nature, 2015-06-01)
    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface, and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a stream tube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall, and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.