Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Idle speed control using linear time varying model predictive control and discrete time approximations
    Sharma, R ; Nesic, D ; Manzie, C (IEEE, 2010-01-01)
    This paper addresses the problem of idle speed control of hydrogen fueled internal combustion engine (H2ICE) using model predictive control (MPC) and sampled data control (SDC) theories. In the first step, results from SDC theory and a version of MPC are collectively employed to obtain a rigorously developed new generic control strategy. Here, a controller, based on a family of approximate discrete time models, is designed within a previously proposed framework to have guaranteed practical asymptotic stability of the exact (unknown) discrete time model. Controller design, accomplished using MPC theory, is facilitated by successive online linearizations of the nonlinear discrete time model at each sampling instant. In the second step, the technique is implemented in the idle speed control of hydrogen internal combustion engine (H2ICE). Various conditions under which this theory can be implemented are presented and their validity for idle speed control problem are discussed. Simulations are presented to illustrate the effectiveness of the control scheme.
  • Item
    Thumbnail Image
    Real time model predictive idle speed control of ultra-lean burn engines: Experimental results
    Sharma, R ; Dennis, P ; Manzie, C ; Nešić, D ; Brear, MJ (IEEE, 2011-01-01)
  • Item
    Thumbnail Image
    Model Reduction of Turbocharged (TC) Spark Ignition (SI) Engines
    Sharma, R ; Nesic, D ; Manzie, C (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2011-03-01)
    This paper proposes a new procedure to reduce the order of control oriented turbocharged (TC) spark ignition (SI) engine models. The starting point of this work is a higher dimensional, fully validated model defined which is not appropriate for control design. The model reduction technique is based on the identification of time scale separation within the dynamics of various engine state variables with pertinent use of perturbation theory. The model reduction is accomplished in two steps and exploits the dynamic and physical characteristics of engine design and operation. In the first step, regular and singular perturbation theories are collectively employed to eliminate temperature dynamics and replace them with their quasi-steady state values. This is followed by the elimination of fast pressures. As a result, a library of engine models is obtained which are associated with each other on a sound theoretical basis and at the same time allow sufficient flexibility in terms of the reduced order modeling. Different assumptions under which this model reduction is justified are presented and their implications are discussed. The approximating properties of the proposed engine models with respect to the original higher dimensional model are quantitatively assessed through comprehensive simulations.