Mechanical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    No Preview Available
    Exploring the Utility of Crutch Force Sensors to Predict User Intent in Assistive Lower Limb Exoskeletons
    Fong, J ; Bernacki, K ; Pham, D ; Shah, R ; Tan, Y ; Oetomo, D (IEEE, 2022)
    The adoption of assistive lower limb exoskeletons in built environments is reliant on the further development of these devices to handle the varied conditions experienced in everyday life. The required development includes more varied and flexible gait patterns, but also appropriate user interfaces to enable fluid gait. This work explores the properties of an algorithm used to predict user intent based on sensors onboard a user-balanced robotic exoskeleton system. Specifically, classification algorithms built with different input data sets are compared - with varying detail of the interaction forces between the crutches and the ground, and the duration of the data sample used to make the prediction. Data were collected with one able-bodied participant using an exoskeleton, training three independent classifiers corresponding to different exoskeleton states. The results indicate the value of including information about the interaction forces between the crutches and the ground in improving prediction accuracy, with increasing prediction window also generally resulting in an increase in prediction accuracy. Whilst no categorical recommendation can be made with respect to either parameter, these results provide a baseline which can be used in conjunction deliberate consideration of the costs associated with implementation.
  • Item
    No Preview Available
    Investigating User Volitional Influence on Step Length in Powered Exoskeleton Designed for Users with SCI
    Cheng, X ; Fong, J ; Tan, Y ; Oetomo, D (IEEE, 2022)
    Volitional movement from users of assistive lower limb exoskeletons may be exploited to increase the controlled variability in the movements of a human-exoskeleton system. This may in turn allow these devices to handle the variability encountered in the terrain of everyday life. This study aimed to investigate the degree to which users can volitionally influence step length, when using an assistive exoskeleton designed for users with spinal cord injury (SCI) running a fixed robotic exoskeleton trajectory. An experiment was conducted to investigate the accessible range of step lengths when five able-bodied participants and one participant with SCI piloted a user-balanced exoskeleton. Participants were asked to take steps as large as possible ("large") and as small as possible ("small"), with the able-bodied individuals asked to minimise use of their leg muscles, with step length of each step measured. Surface electromyography (sEMG) data were collected on major leg muscles of the able-bodied subjects to monitor their muscle activities with a novel processing method introduced to facilitate discussion in the context of users with SCI. The results demonstrate that a user can intentionally manipulate the resulting step length, with every participant having significantly different large and small step sizes (p < 0.05). However, large variations were observed between individuals in terms of absolute step lengths and difference between large and small steps. Moreover, the range of step length (normalised by the leg length) ranged from 0.237 to 0.375 for the able-bodied subjects and 0.245 for the individual with SCI. Although positive correlation was present between the sEMG data and resulting step lengths, the result was not statistically significant (p > 0.05).
  • Item
    No Preview Available
    A Practical Post-Stroke Elbow Spasticity Assessment Using an Upper Limb Rehabilitation Robot: A Validation Study
    Guo, X ; Tang, J ; Crocher, V ; Klaic, M ; Oetomo, D ; Xie, Q ; Galea, MP ; Niu, CM ; Tan, Y (IEEE, 2022-07)
    Spasticity is a motor disorder characterised by a velocity-dependent increase in muscle tone, which is critical in neurorehabilitation given its high prevalence and potential negative influence among the post-stroke population. Accurate measurement of spasticity is important as it guides the strategy of spasticity treatment and evaluates the effectiveness of spasticity management. However, spasticity is commonly measured using clinical scales which may lack objectivity and reliability. Although many technology-assisted measures have been developed, showing their potential as accurate and reliable alternatives to standard clinical scales, they have not been widely adopted in clinical practice due to their low usability and feasibility. This paper thus introduces an easy-to-use robotic based measure of elbow spasticity and its evaluation protocol. Preliminary results collected with one post-stroke patient and one healthy control subject are presented and demonstrate the feasibility of the approach.
  • Item
    No Preview Available
    Uncertainty quantification and reduction using sensitivity analysis and Hessian derivatives
    Sánchez, J ; Otto, K (American Society of Mechanical Engineers, 2021-01-01)
    Abstract We study the use of Hessian interaction terms to quickly identify design variables that reduce variability of system performance. To start we quantify the uncertainty and compute the variance decomposition to determine noise variables that contribute most, all at an initial design. Minimizing the uncertainty is next sought, though probabilistic optimization becomes computationally difficult, whether by including distribution parameters as an objective function or through robust design of experiments. Instead, we consider determining the more easily computed Hessian interaction matrix terms of the variance-contributing noise variables and the variables of any proposed design change. We also relate the Hessian term coefficients to subtractions in Sobol indices and reduction in response variance. Design variable changes that can reduce variability are thereby identified quickly as those with large Hessian terms against noise variables. Furthermore, the Jacobian terms of these design changes can indicate which design variables can shift the mean response, to maintain a desired nominal performance target. Using a combination of easily computed Hessian and Jacobian terms, design changes can be proposed to reduce variability while maintaining a targeted nominal. Lastly, we then recompute the uncertainty and variance decomposition at the more robust design configuration to verify the reduction in variability. This workflow therefore makes use of UQ/SA methods and computes design changes that reduce uncertainty with a minimal 4 runs per design change. An example is shown on a Stirling engine design where the top four variance-contributing tolerances are matched with two design changes identified through Hessian terms, and a new design found with 20% less variance.
  • Item
    No Preview Available
  • Item
    No Preview Available
    On Singular Perturbation for a Class of Discrete-Time Nonlinear Systems in the Presence of Limit Cycles of Fast Dynamics
    LIU, H ; Tan, Y ; Bacek, T ; SUN, M ; Chen, Z ; Kulic, D ; Oetomo, D (IEEE, 2022)
    This paper extends the existing singular perturbation results to a class of nonlinear discrete-time systems whose fast dynamics have limit cycles. By introducing the discrete-time reduced averaged system, the main result (Theorem 1) shows that for a given fixed time interval, the solutions of the original system can be made arbitrarily close to the solutions of the reduced averaged system and the boundary layer system. From this result, the stability properties of the original system are obtained from the stability properties of the reduced averaged system and the boundary layer system. Simulation results support the theoretical findings.
  • Item
    Thumbnail Image
    Varying Joint Patterns and Compensatory Strategies Can Lead to the Same Functional Gait Outcomes: A Case Study
    Bacek, T ; SUN, M ; LIU, H ; Chen, Z ; Kulic, D ; Oetomo, D ; Tan, Y (IEEE, 2022)
    This paper analyses joint-space walking mechanisms and redundancies in delivering functional gait outcomes. Multiple biomechanical measures are analysed for two healthy male adults who participated in a multi-factorial study and walked during three sessions. Both participants employed varying intra- and inter-personal compensatory strategies (e.g., vaulting, hip hiking) across walking conditions and exhibited notable gait pattern alterations while keeping task-space (functional) gait parameters invariant. They also preferred various levels of asymmetric step length but kept their symmetric step time consistent and cadence-invariant during free walking. The results demonstrate the importance of an individualised approach and the need for a paradigm shift from functional (task-space) to joint-space gait analysis in attending to (a)typical gaits and delivering human-centred human-robot interaction.
  • Item
    Thumbnail Image
    Psychometric Evaluation of Multi-Point Bone-Conducted Tactile Stimulation on the Three Bony Landmarks of the Elbow
    Mayer, RM ; Mohammadi, A ; Tan, Y ; Alici, G ; Choong, P ; Oetomo, D (IEEE, 2020)
    Sensory feedback is highly desirable in upper limb prostheses as well as in human robot interaction and other human machine interfaces. Bone conduction as sensory feedback interface is a recently studied approach showing promising properties. A combination of different feedback information is often necessary for prosthetic grasping, thus multiple feedback channels are required for effective sensory feedback. The use of multiple bone conduction stimulation sites simultaneously has not yet been studied. In this paper, the psychometric evaluation of multiple stimulation sites on the physiologically given bony landmarks on the elbow is investigated. The proposed approach is evaluated on human-subject experiments with six able-bodied subjects and one subject with transradial amputation. Vibrotactile transducers are placed on the bony landmarks of the elbow to determine the identification rate of each stimulation point separately as well as the identification rate of the number of active stimulation points for different frequencies. The outcomes show high identification rates for a frequency range from 100 to 750 Hz whilst performance deteriorates to at chance level at higher frequencies. A decreasing performance in identifying the number of active stimulation sites for an increasing number of simultaneous active transducers was observed. The obtained good performance in location identification suggests that information can be encoded via the location of the stimulation.
  • Item
    Thumbnail Image
    Characteristics of Reynolds Shear Stress in Adverse Pressure Gradient Turbulent Boundary Layers
    Romero, S ; Zimmerman, S ; Philip, J ; Klewicki, J (Springer, 2021)
    The focus of the present work is to characterize the features of the turbulent inertia term (the wall-normal gradient of Reynolds shear stress) through the mean momentum balance and the Reynolds shear stress correlation coefficient (ρuv ). Effects of the Reynolds number and Clauser pressure-gradient parameter, β, are discussed. Large eddy simulations of low Reynolds number adverse pressure gradient turbulent boundary layers from Bobke et al. [1], low Reynolds number experimental data from Vila et al. [2] and Volino [3], and newly acquired experimental data at higher Reynolds number from the Flow Physics Facility at The University of New Hampshire are utilized for this analysis. Observations are compared to zero pressure gradient turbulent boundary layer direct numerical simulations of Schlatter and Örlu [4] and Sillero et al. [5], and experimental data from Zimmerman et al. [6] and Zimmerman [7]. These cases show that the correlation coefficient (ρuv ) decreases in magnitude with increasing Reynolds number and β. However, from these initial observations we find that ρuv is more sensitive to changes in the Reynolds number in comparison to the examined range of β. We also find that the location of zero-crossing of the turbulent inertia term seems to scale with δ+ while the minimum of ρuv scales with δ.
  • Item
    Thumbnail Image
    Liquid film breakup induced by turbulent shear flow
    Kozul, M ; Costa, PS ; Dawson, JR ; Brandt, L (ETMM, 2021)
    Airblast atomizers of the ‘prefilming’ type are commonly employed for liquid fuel injection in gas turbine engines propelling modern aircraft. Supplied from holes or slits upstream, the liquid fuel forms a thin film over the prefilming surface before being driven to the atomizing edge by a turbulent flow through the turbine. We consider a simplified numerical setup using a volume-of-fluid method to simulate the essential physics of this multiphase problem. A liquid film is ‘sandwiched’ between sheared turbulent gas flows which deform and then rupture the liquid film. The simplified setup allows us to systematically vary parameters such as film thickness and turbulent gas flow Reynolds number to gauge their role in deforming and ultimately rupturing the initially stationary liquid film. This work presents a detailed study of the developing pressure field over the deforming film and related aerodynamic effects, as previously suggested by other authors, in particular the role of the inviscid lift force. Understanding and controlling the route to breakup and atomization of liquid fuels in such systems is of primary practical concern in modern gas turbine engine design.