Genetics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Investigating the mechanisms of zinc homeostasis in Arabidopsis thaliana
    Sinclair, Scott Aleksander. (University of Melbourne, 2010)
    Zn is an element essential for all forms of life, and either Zn-deficiency or excess Zn can have serious biological consequences. In plants, Zn levels are controlled by a number of physiological and cellular mechanisms to maintain appropriate physiological concentrations of Zn. This study further characterises the HMA2 and HMA4 transporters by developing a novel technique using the Zn fluorophore Zinpyr-1. A procedure for the use of Zinpyr-1 in Arabidopsis roots was developed and validated which allowed the visualisation and relative quantification of Zn. This technique showed that both hma4 and hma2/hma4 mutants differed in the amount of Zn and its distribution compared to wildtype or hma2. This correlates to previous data showing that hma4 and hma2/hma4 are Zn-deficient in shoots but accumulate Zn in roots. Thus we can say that this Zn- deficiency in shoot occurs due to an inability to load Zn into the xylem for transport to the shoot. To investigate the regulation of Zn-homeostasis, Zn-deficient and hma2/hma4 plants were compared to wildtype in micro-array experiments to test whether plants respond systemically to Zn- deficiency. hma2/hma4 plants are Zn-deficient in shoots but over-accumulate Zn in roots, so genes co-regulated in hma2/hma4 roots and shoots, and genes co-regulated in hma2/hma4 roots and Zn- deficient wildtype roots were identified. 52 and 27 genes were identified in these comparisons respectively as regulated >2-fold in the same direction. These were considered robust as their co-regulation was observed in four measurements, two technical replicates of two biological replicates. promoter