Genetics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Identification and analysis of factors influencing intracellular growth of the pathogenic fungus Talaromyces marneffei
    Weerasinghe, Harshini ( 2017)
    Fungal pathogens of animals and plants are a major concern in society with huge economic and public health consequences. The prevalence of pathogenic fungi and the emergence of new, opportunistic fungal pathogens, about which we know little, compounds the current problem. Talaromyces marneffei is a dimorphic, opportunistic pathogenic fungus that infects immunocompromised individuals. At 25 ̊C T. marneffei grows in a multinucleate hyphal form that can undergo a process of asexual development to produce conidia, which are the infectious agents. Upon inhalation, conidia reach the alveoli of the lungs where they are phagocytosed by resident phagocytes such as alveolar macrophages. The transition to 37 ̊C, which is the human host body temperature, induces the dimorphic switch to a pathogenic, uninucleate, fission yeast form. The yeast form is able to utilize macrophages as a niche from within which to avoid detection by the host immune system. T marneffei yeast must then be able to withstand macrophage-killing responses and obtain nutrients in order to proliferate inside these phagocytic cells. The objectives of this study were to determine the transcriptional response of T. marneffei to the host environment, including those induced by growth at body temperature as well as to host-derived cellular signals. This would lead to the identification of genes and pathways necessary for establishing infection. For this purpose RNAseq analysis was used to create a transcriptomic profile of T. marneffei during in vitro growth at 25°C (hyphal) and 37°C (yeast) and during murine and human macrophage infection (ex vivo). To identify pathways that are important during the establishment of the pathogenic yeast cell type, expression data for hyphal growth was compared to yeast growth in vitro and during intracellular macrophage infection. Key nutritional and cell protective pathways that show common upregulation during the yeast growth phase were identified and these included carbon and nitrogen utilization, micronutrient uptake, melanin generation and oxidative stress protection. Additionally, to separate host specific responses from temperature driven expression and identify genes that are specifically regulated during infection, macrophage infection specific transcriptional data sets were compared against the expressionprofile of T. marneffei grown at 37 ̊C in vitro. Twelve genes were chosen for phenotypic characterization using gene deletion as a way of validating the output of the screen, and these genes were shown to be important for different aspects of establishment and maintenance of T. marneffei yeast growth in macrophages. The analysis was extended for a novel gene designated msgA, encoding a guanyl nucleotide exchange factor,which was found to be essential for maintaining appropriate cell morphology, which in turn is crucial for T. marneffei occupying its macrophage niche. Overall the findings of this study revealed that T. marneffei yeast and hyphal forms have adapted specific metabolic programs tailored to the diverse environmental conditions encountered by each cell type. The identification of genes which are specifically required for establishing yeast growth during macrophage infection, uncovered components of pathways that respond to host–specific rather than temperature specific signals. Together these provide valuable insights into the initiation of infection and pathogenicity establishment in T. marneffei, and may serve to broaden our understanding of the means by which to target opportunistic fungal infections.