Genetics - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Cytochrome P450 gene expression in Drosophila melanogaster
    Chung, Hock Wee Henry ( 2008)
    Present in almost all living organisms, cytochrome P450s form one of the biggest enzyme superfamilies. They are versatile biocatalysts, capable of performing a range of biochemical reactions and are involved in a wide spectrum of biological functions. The vinegar fly, Drosophila melanogaster, has 85 P450s in its sequenced genome. Six of these have been found to catalyse the synthesis of the important insect molting hormone, 20-hydroxyecdysone and a handful have been implicated in insecticide resistance. The other P450s remained largely uncharacterised. In the first half of this thesis, the expression patterns of P450s in the D. melanogaster genome were characterised by in situ hybridisation at the third instar larval stage. Most P450s have defined expression patterns at this stage of development. A majority of P450s are expressed in the midgut, Malpighian tubules and fat body, tissues that are involved in the metabolism of xenobiotics. Other P450s are expressed in specific tissues, such as the prothoracic glands, the salivary glands and the gonads, where they might have roles in development or reproduction. In particular, Cyp6g2 is expressed in the corpus allatum (CA), where it could play a role in juvenile hormone synthesis. An RNAi lethality screen using lines that were available from the Vienna Drosophila RNAi Centre identified a number of P450s which are essential for development and viability. In the second half of the thesis, the transcriptional regulation of a P450 involved in insecticide resistance, Cyp6g1, was investigated. Cyp6g1 was regulated by two discrete cis-regulatory modules/enhancers, one controlling expression in the Malpighian tubules and one controlling expression in the midgut and fat body. Phenobarbital induction of Cyp6g1 is tissue-specific and is mediated by a fragment in the 5’ regulatory region that interacts with both enhancers. Characterisation of the long terminal repeat (LTR) of the Accord transposable element in the 5’ region of Cyp6g1, present in insecticide resistant populations, shows that the Accord LTR contains cis-regulatory elements which increase expression of Cyp6g1 in the fat body, midgut and Malpighian tubules, and contribute to insecticide resistance in these populations. This study shows that the diverse tissue distribution of different P450s in D. melanogaster is related to the diverse biological functions of the enzymes encoded. This is exemplified by the detailed examination of the regulation of the insecticide resistance-conferring P450, Cyp6g1. Its expression pattern reflects its detoxification function in the fly. The role of transposable element insertions in changing gene expression patterns and contributing to selectable variation in genomes is also demonstrated through the Cyp6g1 study.