University General - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Miniaturizing color-sensitive photodetectors via hybrid nanoantennas toward submicrometer dimensions
    Ho, J ; Dong, Z ; Leong, HS ; Zhang, J ; Tjiptoharsono, F ; Rezaei, SD ; Goh, KCH ; Wu, M ; Li, S ; Chee, J ; Wong, CPY ; Kuznetsov, AI ; Yang, JKW (AMER ASSOC ADVANCEMENT SCIENCE, 2022-11-25)
    Digital camera sensors use color filters on photodiodes to achieve color selectivity. As the color filters and photosensitive silicon layers are separate elements, these sensors suffer from optical cross-talk, which sets limits to the minimum pixel size. Here, we report hybrid silicon-aluminum nanostructures in the extreme limit of zero distance between color filters and sensors. This design could essentially achieve submicrometer pixel dimensions and minimize the optical cross-talk arising from tilt illuminations. The designed hybrid silicon-aluminum nanostructure has dual functionalities. Crucially, it supports a hybrid Mie-plasmon resonance of magnetic dipole to achieve color-selective light absorption, generating electron hole pairs. Simultaneously, the silicon-aluminum interface forms a Schottky barrier for charge separation and photodetection. This design potentially replaces the traditional dye-based filters for camera sensors at ultrahigh pixel densities with advanced functionalities in sensing polarization and directionality, and UV selectivity via interband plasmons of silicon.
  • Item
    Thumbnail Image
    High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities
    Mansha, S ; Moitra, P ; Xu, X ; Mass, TWW ; Veetil, RM ; Liang, X ; Li, S-Q ; Paniagua-Dominguez, R ; Kuznetsov, AI (SPRINGERNATURE, 2022-05-17)
    Spatial light modulators (SLMs) are the most relevant technology for dynamic wavefront manipulation. They find diverse applications ranging from novel displays to optical and quantum communications. Among commercial SLMs for phase modulation, Liquid Crystal on Silicon (LCoS) offers the smallest pixel size and, thus, the most precise phase mapping and largest field of view (FOV). Further pixel miniaturization, however, is not possible in these devices due to inter-pixel cross-talks, which follow from the high driving voltages needed to modulate the thick liquid crystal (LC) cells that are necessary for full phase control. Newly introduced metasurface-based SLMs provide means for pixel miniaturization by modulating the phase via resonance tuning. These devices, however, are intrinsically monochromatic, limiting their use in applications requiring multi-wavelength operation. Here, we introduce a novel design allowing small pixel and multi-spectral operation. Based on LC-tunable Fabry-Perot nanocavities engineered to support multiple resonances across the visible range (including red, green and blue wavelengths), our design provides continuous 2π phase modulation with high reflectance at each of the operating wavelengths. Experimentally, we realize a device with 96 pixels (~1 μm pitch) that can be individually addressed by electrical biases. Using it, we first demonstrate multi-spectral programmable beam steering with FOV~18° and absolute efficiencies exceeding 40%. Then, we reprogram the device to achieve multi-spectral lensing with tunable focal distance and efficiencies ~27%. Our design paves the way towards a new class of SLM for future applications in displays, optical computing and beyond.
  • Item
    No Preview Available
    A Novel Optical Assay System for Bilirubin Concentration Measurement in Whole Blood
    Ndabakuranye, JP ; Rajapaksa, AE ; Burchall, G ; Li, S ; Prawer, S ; Ahnood, A (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-02)
    As a biomarker for liver disease, bilirubin has been utilized in prognostic scoring systems for cirrhosis. While laboratory-based methods are used to determine bilirubin levels in clinical settings, they do not readily lend themselves to applications outside of hospitals. Consequently, bilirubin monitoring for cirrhotic patients is often performed only intermittently; thus, episodes requiring clinical interventions could be missed. This work investigates the feasibility of measuring bilirubin concentration in whole porcine blood samples using dual-wavelength transmission measurement. A compact and low-cost dual-wavelength transmission measurement setup is developed and optimized to measure whole blood bilirubin concentrations. Using small volumes of whole porcine blood (72 µL), we measured the bilirubin concentration within a range corresponding to healthy individuals and cirrhotic patients (1.2-30 mg/dL). We demonstrate that bilirubin levels can be estimated with a positive correlation (R-square > 0.95) and an accuracy of ±1.7 mg/dL, with higher reliability in cirrhotic bilirubin concentrations (> 4 mg/dL) - critical for high-risk patients. The optical and electronic components utilized are economical and can be readily integrated into a miniature, low-cost, and user-friendly system. This could provide a pathway for point-of-care monitoring of blood bilirubin outside of medical facilities (e.g., patient's home).