Centre for Cancer Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    IL-6 promotes acute and chronic inflammatory disease in the absence of SOCS3
    Croker, BA ; Kiu, H ; Pellegrini, M ; Toe, J ; Preston, S ; Metcalf, D ; O'Donnell, JA ; Cengia, LH ; McArthur, K ; Nicola, NA ; Alexander, WS ; Roberts, AW (NATURE PUBLISHING GROUP, 2012-01)
    The lack of expression of the suppressor of cytokine signalling-3 (SOCS3) or inactivation of the negative regulatory capacity of SOCS3 has been well documented in rheumatoid arthritis, viral hepatitis and cancer. The specific qualitative and quantitative consequences of SOCS3 deficiency on interleukin-6 (IL-6)-mediated pro- and anti-inflammatory responses remain controversial in vitro and unknown in vivo. Mice with a conditional deletion of SOCS3 in hematopoietic cells develop lethal inflammatory disease during adult life and develop gross histopathological changes during experimental arthritis, typified by elevated IL-6 levels. To clarify the nature of the IL-6 responses in vivo, we generated mice deficient in SOCS3 (SOCS3(-/Δvav)) or both SOCS3 and IL-6 (IL-6(-/-)/SOCS3(-/Δvav)), and examined responses in models of acute and chronic inflammation. Acute responses to IL-1β were lethal to SOCS3(-/Δvav) mice but not IL-6(-/-)/SOCS3(-/Δvav) mice, indicating that IL-6 was required for the lethal inflammation induced by IL-1β. Administration of IL-1β to SOCS3(-/Δvav) mice induced systemic apoptosis of lymphocytes in the thymus, spleen and lymph nodes that was dependent on the presence of IL-6. IL-6 deficiency prolonged survival of SOCS3(-/Δvav) mice and ameliorated spontaneous inflammatory disease developing during adult life. Infection of SOCS3(-/Δvav) mice with LCMV induced a lethal inflammatory response that was dependent on IL-6, despite SOCS3(-/Δvav) mice controlling viral replication. We conclude that SOCS3 is required for survival during inflammatory responses and is a critical regulator of IL-6 in vivo.
  • Item
    Thumbnail Image
    Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets
    Josefsson, EC ; James, C ; Henley, KJ ; Debrincat, MA ; Rogers, KL ; Dowling, MR ; White, MJ ; Kruse, EA ; Lane, RM ; Ellis, S ; Nurden, P ; Mason, KD ; O'Reilly, LA ; Roberts, AW ; Metcalf, D ; Huang, DCS ; Kile, BT (ROCKEFELLER UNIV PRESS, 2011-09-26)
    It is believed that megakaryocytes undergo a specialized form of apoptosis to shed platelets. Conversely, a range of pathophysiological insults, including chemotherapy, are thought to cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. To resolve this paradox, we generated mice with hematopoietic- or megakaryocyte-specific deletions of the essential mediators of apoptosis, Bak and Bax. We found that platelet production was unperturbed. In stark contrast, deletion of the prosurvival protein Bcl-x(L) resulted in megakaryocyte apoptosis and a failure of platelet shedding. This could be rescued by deletion of Bak and Bax. We examined the effect on megakaryocytes of three agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and the BH3 mimetic ABT-737. All three triggered mitochondrial damage, caspase activation, and cell death. Deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and ABT-737. In vivo, mice with a Bak(-/-) Bax(-/-) hematopoietic system were protected against thrombocytopenia induced by the chemotherapeutic agent carboplatin. Thus, megakaryocytes do not activate the intrinsic pathway to generate platelets; rather, the opposite is true: they must restrain it to survive and progress safely through proplatelet formation and platelet shedding.
  • Item
    Thumbnail Image
    Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β
    Kim, ML ; Chae, JJ ; Park, YH ; De Nardo, D ; Stirzaker, RA ; Ko, H-J ; Tye, H ; Cengia, L ; DiRago, L ; Metcalf, D ; Roberts, AW ; Kastner, DL ; Lew, AM ; Lyras, D ; Kile, BT ; Croker, BA ; Masters, SL (ROCKEFELLER UNIV PRESS, 2015-06-01)
    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.