Centre for Cancer Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor
    Lindqvist, LM ; Vikstroem, I ; Chambers, JM ; McArthur, K ; Anderson, MA ; Henley, KJ ; Happo, L ; Cluse, L ; Johnstone, RW ; Roberts, AW ; Kile, BT ; Croker, BA ; Burns, CJ ; Rizzacasa, MA ; Strasser, A ; Huang, DCS (NATURE PUBLISHING GROUP, 2012-10)
    There is significant interest in treating cancers by blocking protein synthesis, to which hematological malignancies seem particularly sensitive. The translation elongation inhibitor homoharringtonine (Omacetaxine mepesuccinate) is undergoing clinical trials for chronic myeloid leukemia, whereas the translation initiation inhibitor silvestrol has shown promise in mouse models of cancer. Precisely how these compounds induce cell death is unclear, but reduction in Mcl-1, a labile pro-survival Bcl-2 family member, has been proposed to constitute the critical event. Moreover, the contribution of translation inhibitors to neutropenia and lymphopenia has not been precisely defined. Herein, we demonstrate that primary B cells and neutrophils are highly sensitive to translation inhibitors, which trigger the Bax/Bak-mediated apoptotic pathway. However, contrary to expectations, reduction of Mcl-1 did not significantly enhance cytotoxicity of these compounds, suggesting that it does not have a principal role and cautions that strong correlations do not always signify causality. On the other hand, the killing of T lymphocytes was less dependent on Bax and Bak, indicating that translation inhibitors can also induce cell death via alternative mechanisms. Indeed, loss of clonogenic survival proved to be independent of the Bax/Bak-mediated apoptosis altogether. Our findings warn of potential toxicity as these translation inhibitors are cytotoxic to many differentiated non-cycling cells.
  • Item
    Thumbnail Image
    Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations
    Birkinshaw, RW ; Gong, J-N ; Luo, CS ; Lio, D ; White, CA ; Anderson, MA ; Blombery, P ; Lessene, G ; Majewski, IJ ; Thijssen, R ; Roberts, AW ; Huang, DCS ; Colman, PM ; Czabotar, PE (NATURE PUBLISHING GROUP, 2019-06-03)
    Venetoclax is a first-in-class cancer therapy that interacts with the cellular apoptotic machinery promoting apoptosis. Treatment of patients suffering chronic lymphocytic leukaemia with this BCL-2 antagonist has revealed emergence of a drug-selected BCL-2 mutation (G101V) in some patients failing therapy. To understand the molecular basis of this acquired resistance we describe the crystal structures of venetoclax bound to both BCL-2 and the G101V mutant. The pose of venetoclax in its binding site on BCL-2 reveals small but unexpected differences as compared to published structures of complexes with venetoclax analogues. The G101V mutant complex structure and mutant binding assays reveal that resistance is acquired by a knock-on effect of V101 on an adjacent residue, E152, with venetoclax binding restored by a E152A mutation. This provides a framework for considering analogues of venetoclax that might be effective in combating this mutation.