Centre for Cancer Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia
    Moujalled, DM ; Brown, FC ; Chua, CC ; Dengler, MA ; Pomilio, G ; Anstee, NS ; Litalien, V ; Thompson, E ; Morley, T ; MacRaild, S ; Tiong, IS ; Morris, R ; Dun, K ; Zordan, A ; Shah, J ; Banquet, S ; Halilovic, E ; Morris, E ; Herold, MJ ; Lessene, G ; Adams, JM ; Huang, DCS ; Roberts, AW ; Blombery, P ; Wei, AH (AMER SOC HEMATOLOGY, 2023-02-09)
    Randomized trials in acute myeloid leukemia (AML) have demonstrated improved survival by the BCL-2 inhibitor venetoclax combined with azacitidine in older patients, and clinical trials are actively exploring the role of venetoclax in combination with intensive chemotherapy in fitter patients with AML. As most patients still develop recurrent disease, improved understanding of relapse mechanisms is needed. We find that 17% of patients relapsing after venetoclax-based therapy for AML have acquired inactivating missense or frameshift/nonsense mutations in the apoptosis effector gene BAX. In contrast, such variants were rare after genotoxic chemotherapy. BAX variants arose within either leukemic or preleukemic compartments, with multiple mutations observed in some patients. In vitro, AML cells with mutated BAX were competitively selected during prolonged exposure to BCL-2 antagonists. In model systems, AML cells rendered deficient for BAX, but not its close relative BAK, displayed resistance to BCL-2 targeting, whereas sensitivity to conventional chemotherapy was variable. Acquired mutations in BAX during venetoclax-based therapy represent a novel mechanism of resistance to BH3-mimetics and a potential barrier to the long-term efficacy of drugs targeting BCL-2 in AML.
  • Item
    Thumbnail Image
    Pharmacologic Reduction of Mitochondrial Iron Triggers a Noncanonical BAX/BAK Dependent Cell Death
    Garciaz, S ; Guirguis, AA ; Muller, S ; Brown, FC ; Chan, Y-C ; Motazediani, A ; Rowe, CL ; Kuzich, JA ; Chan, KL ; Tran, K ; Smith, L ; MacPherson, L ; Liddicoat, B ; Lam, EYN ; Caneque, T ; Burr, ML ; Litalien, V ; Pomilio, G ; Poplineau, M ; Duprez, E ; Dawson, S-J ; Ramm, G ; Cox, AG ; Brown, KK ; Huang, DCS ; Wei, AH ; McArthur, K ; Rodriguez, R ; Dawson, MA (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE: Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.
  • Item
    No Preview Available
    Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL
    Blombery, P ; Lew, TE ; Dengler, MA ; Thompson, ER ; Lin, VS ; Chen, X ; Nguyen, T ; Panigrahi, A ; Handunnetti, SM ; Carney, DA ; Westerman, DA ; Tam, CS ; Adams, JM ; Wei, AH ; Huang, DCS ; Seymour, JF ; Roberts, AW ; Anderson, MA (AMER SOC HEMATOLOGY, 2022-02-24)
    The BCL2 inhibitor venetoclax has established therapeutic roles in chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). As BCL2 is an important determinant of survival of both myeloid progenitor and B cells, we investigated whether clinical and molecular abnormalities arise in the myeloid compartment during long-term continuous venetoclax treatment of CLL in 89 patients (87 with relapsed/refractory CLL). Over a median follow-up of 75 (range 21-98) months, persistent cytopenias (≥1 of neutropenia, thrombocytopenia, anemia) lasting ≥4 months and unrelated to CLL occurred in 25 patients (28%). Of these patients, 20 (80%) displayed clonal hematopoiesis, including 10 with therapy-related myeloid neoplasms (t-MNs). t-MNs occurred exclusively in patients previously exposed to fludarabine-alkylator combination therapy with a cumulative 5-year incidence of 10.4% after venetoclax initiation, consistent with rates reported for patients exposed to fludarabine-alkylator combination therapy without venetoclax. To determine whether the altered myelopoiesis reflected the acquisition of mutations, we analyzed samples from patients with no or minimal bone marrow CLL burden (n = 41). Mutations in the apoptosis effector BAX were identified in 32% (13/41). In cellular assays, C-terminal BAX mutants abrogated outer mitochondrial membrane localization of BAX and engendered resistance to venetoclax killing. BAX-mutated clonal hematopoiesis occurred independently of prior fludarabine-alkylator combination therapy exposure and was not associated with t-MNs. Single-cell sequencing revealed clonal co-occurrence of mutations in BAX with DNMT3A or ASXL1. We also observed simultaneous BCL2 mutations within CLL cells and BAX mutations in the myeloid compartment of the same patients, indicating lineage-specific adaptation to venetoclax therapy.
  • Item
    No Preview Available
    Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias
    Thijssen, R ; Diepstraten, ST ; Moujalled, D ; Chew, E ; Flensburg, C ; Shi, MX ; Dengler, MA ; Litalien, V ; MacRaild, S ; Chen, M ; Anstee, NS ; Reljic, B ; Gabriel, SS ; Djajawi, TM ; Riffkin, CD ; Aubrey, BJ ; Chang, C ; Tai, L ; Xu, Z ; Morley, T ; Pomilio, G ; Bruedigam, C ; Kallies, A ; Stroud, DA ; Bajel, A ; Kluck, RM ; Lane, SW ; Schoumacher, M ; Banquet, S ; Majewski, IJ ; Strasser, A ; Roberts, AW ; Huang, DCS ; Brown, FC ; Kelly, GL ; Wei, AH (AMER SOC HEMATOLOGY, 2021-05-20)
    Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.
  • Item
    Thumbnail Image
    Cotargeting BCL-2 and MCL-1 in high-risk B-ALL
    Moujalled, DM ; Hanna, DT ; Hediyeh-zadeh, S ; Pomilio, G ; Brown, L ; Litalien, V ; Bartolo, R ; Fleming, S ; Chanrion, M ; Banquet, S ; Maragno, A-L ; Kraus-Berthier, L ; Schoumacher, M ; Mullighan, CG ; Georgiou, A ; White, CA ; Lessene, G ; Huang, DCS ; Roberts, AW ; Geneste, O ; Rasmussen, L ; Davis, MJ ; Ekert, PG ; Wei, A ; Ng, AP ; Khaw, SL (AMER SOC HEMATOLOGY, 2020-06-23)
    Improving survival outcomes in adult B-cell acute lymphoblastic leukemia (B-ALL) remains a clinical challenge. Relapsed disease has a poor prognosis despite the use of tyrosine kinase inhibitors (TKIs) for Philadelphia chromosome positive (Ph+ ALL) cases and immunotherapeutic approaches, including blinatumomab and chimeric antigen receptor T cells. Targeting aberrant cell survival pathways with selective small molecule BH3-mimetic inhibitors of BCL-2 (venetoclax, S55746), BCL-XL (A1331852), or MCL1 (S63845) is an emerging therapeutic option. We report that combined targeting of BCL-2 and MCL1 is synergistic in B-ALL in vitro. The combination demonstrated greater efficacy than standard chemotherapeutics and TKIs in primary samples from adult B-ALL with Ph+ ALL, Ph-like ALL, and other B-ALL. Moreover, combined BCL-2 or MCL1 inhibition with dasatinib showed potent killing in primary Ph+ B-ALL cases, but the BH3-mimetic combination appeared superior in vitro in a variety of Ph-like ALL samples. In PDX models, combined BCL-2 and MCL1 targeting eradicated ALL from Ph- and Ph+ B-ALL cases, although fatal tumor lysis was observed in some instances of high tumor burden. We conclude that a dual BH3-mimetic approach is highly effective in diverse models of high-risk human B-ALL and warrants assessment in clinical trials that incorporate tumor lysis precautions.