Centre for Cancer Research - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    Identification of somatic mutations of the MEN1 gene in sporadic endocrine tumours
    Bergman, L ; Boothroyd, C ; Palmer, J ; Grimmond, S ; Walters, M ; Teh, B ; Shepherd, J ; Hartley, L ; Hayward, N (NATURE PUBLISHING GROUP, 2000-10)
    Endocrine tumours of the pancreas, anterior pituitary or parathyroids arise either sporadically in the general population, or as a part of inherited syndromes such as multiple endocrine neoplasia type 1 (MEN 1). The mechanisms responsible for the development of sporadic endocrine lesions are not well understood, although loss of heterozygosity (LOH) of the MEN1 locus on chromosome 11q13 and somatic mutation of the MEN1 gene have been frequently associated with the development of MEN 1-type sporadic endocrine lesions. To further investigate the role of the MEN1 gene in sporadic endocrine tumorigenesis, we analysed DNA from 14 primary parathyroid lesions, 8 anterior pituitary tumours and 3 pancreatic tumours for the presence of somatic MEN1 gene mutations and LOH of seven microsatellite markers flanking the MEN1 locus. In addition, we similarly analysed 8 secondary parathyroid lesions which arose in patients with chronic renal failure. None of the patients studied had a family history of MEN 1. Three primary parathyroid lesions and one pancreatic tumour (glucagonoma) were found to have lost one allele at the MEN1 locus. Somatic mutations were identified by SSCP and sequence analysis in one of these parathyroid lesions (P320L) and in the glucagonoma (E179V). These results support previous findings that inactivation of the MEN1 tumour suppressor gene contributes to the development of sporadic MEN 1-type endocrine lesions but is not associated with the development of parathyroid hyperplasia seen in some renal failure patients.
  • Item
    No Preview Available
    Transcriptome content and dynamics at single-nucleotide resolution
    Cloonan, N ; Grimmond, SM (BMC, 2008)
    Massively parallel short-tag sequencing of cDNA libraries--RNAseq--is being used to study the dynamics and complexity of eukaryotic transcriptomes, giving new biological insights into the 'active genome'.
  • Item
    Thumbnail Image
    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells
    Hough, SR ; Laslett, AL ; Grimmond, SB ; Kolle, G ; Pera, MF ; Reh, TA (PUBLIC LIBRARY SCIENCE, 2009-11-05)
    BACKGROUND: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. METHODOLOGY/PRINCIPAL FINDINGS: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. SIGNIFICANCE: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency.
  • Item
    Thumbnail Image
    Transcriptional analysis of early lineage commitment in human embryonic stem cells
    Laslett, AL ; Grimmond, S ; Gardiner, B ; Stamp, L ; Lin, A ; Hawes, SM ; Wormald, S ; Nikolic-Paterson, D ; Haylock, D ; Pera, MF (BMC, 2007-03-02)
    BACKGROUND: The mechanisms responsible for the maintenance of pluripotency in human embryonic stem cells, and those that drive their commitment into particular differentiation lineages, are poorly understood. In fact, even our knowledge of the phenotype of hESC is limited, because the immunological and molecular criteria presently used to define this phenotype describe the properties of a heterogeneous population of cells. RESULTS: We used a novel approach combining immunological and transcriptional analysis (immunotranscriptional profiling) to compare gene expression in hESC populations at very early stages of differentiation. Immunotranscriptional profiling enabled us to identify novel markers of stem cells and their differentiated progeny, as well as novel potential regulators of hESC commitment and differentiation. The data show clearly that genes associated with the pluripotent state are downregulated in a coordinated fashion, and that they are co-expressed with lineage specific transcription factors in a continuum during the early stages of stem cell differentiation. CONCLUSION: These findings, that show that maintenance of pluripotency and lineage commitment are dynamic, interactive processes in hESC cultures, have important practical implications for propagation and directed differentiation of these cells, and for the interpretation of mechanistic studies of hESC renewal and commitment. Since embryonic stem cells at defined stages of commitment can be isolated in large numbers by immunological means, they provide a powerful model for studying molecular genetics of stem cell commitment in the embryo.
  • Item
    Thumbnail Image
    Alternate transcription of the Toll-like receptor signaling cascade
    Wells, CA ; Chalk, AM ; Forrest, A ; Taylor, D ; Waddell, N ; Schroder, K ; Himes, SR ; Faulkner, G ; Lo, S ; Kasukawa, T ; Kawaji, H ; Kai, C ; Kawai, J ; Katayama, S ; Carninci, P ; Hayashizaki, Y ; Hume, DA ; Grimmond, SM (BMC, 2006)
    BACKGROUND: Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. RESULTS: A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. CONCLUSION: Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-gamma and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling.
  • Item
    Thumbnail Image
    Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH
    Ragan, C ; Cloonan, N ; Grimmond, SM ; Zuker, M ; Ragan, MA ; Patil, CK (PUBLIC LIBRARY SCIENCE, 2009-05-29)
    Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 5' end of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only the 3'UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells, we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions.
  • Item
    Thumbnail Image
    Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases
    Forrest, ARR ; Taylor, DF ; Crowe, ML ; Chalk, AM ; Waddell, NJ ; Kolle, G ; Faulkner, GJ ; Rimantas, K ; Katayama, S ; Wells, C ; Kai, C ; Kawai, J ; Carninci, P ; Hayashizaki, Y ; Grimmond, SM (BMC, 2006)
    BACKGROUND: Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse http://variant.imb.uq.edu.au. RESULTS: By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. CONCLUSION: These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways.
  • Item
    Thumbnail Image
    RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data
    Cloonan, N ; Xu, Q ; Faulkner, GJ ; Taylor, DF ; Tang, DTP ; Kolle, G ; Grimmond, SM (OXFORD UNIV PRESS, 2009-10-01)
    UNLABELLED: Mapping of next-generation sequencing data derived from RNA samples (RNAseq) presents different genome mapping challenges than data derived from DNA. For example, tags that cross exon-junction boundaries will often not map to a reference genome, and the strand specificity of the data needs to be retained. Here we present RNA-MATE, a computational pipeline based on a recursive mapping strategy for placing strand specific RNAseq data onto a reference genome. Maximizing the mappable tags can provide significant savings in the cost of sequencing experiments. This pipeline provides an automatic and integrated way to align color-space sequencing data, collate this information and generate files for examining gene-expression data in a genomic context. AVAILABILITY: Executables, source code, and exon-junction libraries are available from http://grimmond.imb.uq.edu.au/RNA-MATE/
  • Item
    Thumbnail Image
    Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria
    Srikhanta, YN ; Dowideit, SJ ; Edwards, JL ; Falsetta, ML ; Wu, H-J ; Harrison, OB ; Fox, KL ; Seib, KL ; Maguire, TL ; Wang, AH-J ; Maiden, MC ; Grimmond, SM ; Apicella, MA ; Jennings, MP ; Seifert, HS (PUBLIC LIBRARY SCIENCE, 2009-04)
    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between "differentiated" cell types.
  • Item
    Thumbnail Image
    NRED: a database of long noncoding RNA expression
    Dinger, ME ; Pang, KC ; Mercer, TR ; Crowe, ML ; Grimmond, SM ; Mattick, JS (OXFORD UNIV PRESS, 2009-01)
    In mammals, thousands of long non-protein-coding RNAs (ncRNAs) (>200 nt) have recently been described. However, the biological significance and function of the vast majority of these transcripts remain unclear. We have constructed a public repository, the Noncoding RNA Expression Database (NRED), which provides gene expression information for thousands of long ncRNAs in human and mouse. The database contains both microarray and in situ hybridization data, much of which is described here for the first time. NRED also supplies a rich tapestry of ancillary information for featured ncRNAs, including evolutionary conservation, secondary structure evidence, genomic context links and antisense relationships. The database is available at http://jsm-research.imb.uq.edu.au/NRED, and the web interface enables both advanced searches and data downloads. Taken together, NRED should significantly advance the study and understanding of long ncRNAs, and provides a timely and valuable resource to the scientific community.