School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Hidden information on protein function in censuses of proteome foldedness
    Cox, D ; Ang, C-S ; Nillegoda, NB ; Reid, GE ; Hatters, DM (NATURE PORTFOLIO, 2022-04-14)
    Methods that assay protein foldedness with proteomics have generated censuses of apparent protein folding stabilities in biological milieu. However, different censuses poorly correlate with each other. Here, we show that the reason for this is that methods targeting foldedness through monitoring amino acid sidechain reactivity also detect changes in conformation and ligand binding, which can be a substantial fraction of the data. We show that the reactivity of only one quarter of cysteine or methionine sidechains in proteins in a urea denaturation curve of mammalian cell lysate can be confidently explained by a two-state unfolding isotherm. Contrary to that expected from unfolding, up to one third of the cysteines decreased reactivity. These cysteines were enriched in proteins with functions relating to unfolded protein stress. One protein, chaperone HSPA8, displayed changes arising from ligand and cofactor binding. Unmasking this hidden information using the approaches outlined here should improve efforts to understand both folding and the remodeling of protein function directly in complex biological settings.
  • Item
    Thumbnail Image
    Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity
    Radwan, M ; Ang, C-S ; Ormsby, AR ; Cox, D ; Daly, JC ; Reid, GE ; Hatters, DM (ELSEVIER, 2020-04)
    C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.