School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp biomass
    Yao, S ; Mettu, S ; Law, SQK ; Ashokkumar, M ; Martin, GJO (ELSEVIER SCIENCE BV, 2018-11-01)
    The effect of ultrasonication on the cell rupture of marine microalgae Nannochloropsis sp. was studied as a function of the slurry solids concentration and treatment time. The concentrated viscous wet-biomass (~12 to 25% solids concentration) was subjected to ultrasonication (20 kHz) at 3.8 W/mL for up to 5 min. Compared to extraction without cell rupture, sonication led to a significant increase in lipid yield from ~11% to about 70% within 5 min of sonication. The extraction yield was found to decrease with increased solids concentration, with a large decrease between 20% to 25% solids. This is attributed to the increase in viscosity and decrease in speed of sound with increase in solids. The ultrasound attenuation coefficient increased 320-fold as the solids increased from 20 to 25%. Such a large attenuation of ultrasound places a limit of 20% solids to be used for cell rupture by ultrasound. The specific energy requirements per unit mass of extracted lipid were lowest at 20% solids. At lower concentrations energy was wasted heating water, at higher concentrations the lipid yields were reduced due to ultrasound attenuation.
  • Item
    Thumbnail Image
    Emulsifying properties of ruptured microalgae cells: Barriers to lipid extraction or promising biosurfactants?
    Law, SQK ; Mettu, S ; Ashokkumar, M ; Scales, PJ ; Martin, GJO (ELSEVIER SCIENCE BV, 2018-10-01)
    A systematic investigation of the emulsifying properties of ruptured algae cells was performed for the first time. The slurry of ruptured algae cells was separated into different biomass fractions, namely the cell debris, the delipidated debris, the serum, and the lipid. The interfacial interactions of these biomass fractions with a nonpolar solvent (e.g. hexane or hexadecane) were characterized using pendant drop tensiometry and interfacial shear rheology. The stability of the different emulsions (formed by the different biomass fractions) was tested using analytical centrifugation. The extracted lipid was an excellent surfactant that reduced the interfacial tension, however, it was not effective at stabilizing the emulsions. The protein-rich serum produced a strong interfacial film that stabilized the emulsions against coalescence during centrifugation. The cell debris stabilized the emulsions to a lesser extent by adsorbing to the droplet surface, presumably via interactions with hydrophobic extracellular polymeric substances (EPS). However, neither the serum nor the cell debris were very effective surfactants, and required the presence of the lipid fraction to produce small emulsion droplets. When present together, the components exhibited competitive interfacial adsorption, which influenced emulsion stability. In particular, the interruption of the protein film by the presence of lipid or cell debris reduced the stability of the emulsions. This study provides a new mechanistic understanding of emulsification during wet lipid extraction from microalgae that will be useful for determining strategies to improve solvent recovery. The results also suggest potential for developing effective bioemulsifiers or biosurfactants from fractionated microalgae biomass for commercial application.