School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Pre-targeting amyloid-β with antibodies for potential molecular imaging of Alzheimer's disease
    Morgan, KA ; de Veer, M ; Miles, LA ; Kelderman, CAA ; McLean, CA ; Masters, CL ; Barnham, KJ ; White, JM ; Paterson, BM ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2023-02-21)
    With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-β were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.
  • Item
    Thumbnail Image
    Rhenium and technetium complexes that bind to amyloid-β plaques
    Hayne, DJ ; North, AJ ; Fodero-Tavoletti, M ; White, JM ; Hung, LW ; Rigopoulos, A ; McLean, CA ; Adlard, PA ; Ackermann, U ; Tochon-Danguy, H ; Villemagne, VL ; Barnham, KJ ; Donnelly, PS (ROYAL SOC CHEMISTRY, 2015)
    Alzheimer's disease is associated with the presence of insoluble protein deposits in the brain called amyloid plaques. The major constituent of these deposits is aggregated amyloid-β peptide. Technetium-99m complexes that bind to amyloid-β plaques could provide important diagnostic information on amyloid-β plaque burden using Single Photon Emission Computed Tomography (SPECT). Tridentate ligands with a stilbene functional group were used to form complexes with the fac-[M(I)(CO)3](+) (M = Re or (99m)Tc) core. The rhenium carbonyl complexes with tridentate co-ligands that included a stilbene functional group and a dimethylamino substituent bound to amyloid-β present in human frontal cortex brain tissue from subjects with Alzheimer's disease. This chemistry was extended to make the analogous [(99m)Tc(I)(CO)3](+) complexes and the complexes were sufficiently stable in human serum. Whilst the lipophilicity (log D7.4) of the technetium complexes appeared ideally suited for penetration of the blood-brain barrier, preliminary biodistribution studies in an AD mouse model (APP/PS1) revealed relatively low brain uptake (0.24% ID g(-1) at 2 min post injection).