School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules
    Cui, J ; Yan, Y ; Such, GK ; Liang, K ; Ochs, CJ ; Postma, A ; Caruso, F (AMER CHEMICAL SOC, 2012-08)
    We report a facile approach to immobilize pH-cleavable polymer-drug conjugates in mussel-inspired polydopamine (PDA) capsules for intracellular drug delivery. Our design takes advantage of the facile PDA coating to form capsules, the chemical reactivity of PDA films, and the acid-labile groups in polymer side chains for sustained pH-induced drug release. The anticancer drug doxorubicin (Dox) was conjugated to thiolated poly(methacrylic acid) (PMA(SH)) with a pH-cleavable hydrazone bond, and then immobilized in PDA capsules via robust thiol-catechol reactions between the polymer-drug conjugate and capsule walls. The loaded Dox showed limited release at physiological pH but significant release (over 85%) at endosomal/lysosomal pH. Cell viability assays showed that Dox-loaded PDA capsules enhanced the efficacy of eradicating HeLa cancer cells compared with free drug under the same assay conditions. The reported method provides a new platform for the application of stimuli-responsive PDA capsules as drug delivery systems.
  • Item
    No Preview Available
    Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers
    Ochs, CJ ; Such, GK ; Yan, Y ; van Koeverden, MP ; Caruso, F (AMER CHEMICAL SOC, 2010-03)
    We report the modular assembly of a polymer-drug conjugate into covalently stabilized, responsive, biodegradable, and drug-loaded capsules with control over drug dose and position in the multilayer film. The cancer therapeutic, doxorubicin hydrochloride (DOX), was conjugated to alkyne-functionalized poly(l-glutamic acid) (PGA(Alk)) via amide bond formation. PGA(Alk) and PGA(Alk+DOX) were assembled via hydrogen bonding with poly(N-vinyl pyrrolidone) (PVPON) on planar and colloidal silica templates. The films were subsequently covalently stabilized using diazide cross-linkers, and PVPON was released from the multilayers by altering the solution pH to disrupt hydrogen bonding. After removal of the sacrificial template, single-component PGA(Alk) capsules were obtained and analyzed by optical microscopy, transmission electron microscopy, and atomic force microscopy. The PGA(Alk) capsules were stable in the pH range between 2 and 11 and exhibited reversible swelling/shrinking behavior. PGA(Alk+DOX) was assembled to form drug-loaded polymer capsules with control over drug dose and position in the multilayer system (e.g., DOX in every layer or exclusively in layer 3). The drug-loaded capsules could be degraded enzymatically, resulting in the sustained release of active DOX over approximately 2 h. Cellular uptake studies demonstrate that the viability of cells incubated with DOX-loaded PGA(Alk) capsules significantly decreased. The general applicability of this modular approach, in terms of incorporation of polymer-drug conjugates in other click multilayer systems, was also demonstrated. Biodegradable click capsules with drug-loaded multilayers are promising candidates as carrier systems for biomedical applications.
  • Item
    Thumbnail Image
    Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules
    Yan, Y ; Ochs, CJ ; Such, GK ; Heath, JK ; Nice, EC ; Caruso, F (WILEY-V C H VERLAG GMBH, 2010-12-14)
  • Item
    Thumbnail Image
    Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles
    Yan, Y ; Such, GK ; Johnston, APR ; Lomas, H ; Caruso, F (AMER CHEMICAL SOC, 2011-06)
    Layer-by-layer (LbL)-engineered particles have recently emerged as a promising class of materials for applications in biomedicine, with studies progressing from in vitro to in vivo. The versatility of LbL assembly coupled with particle templating has led to engineered particles with specific properties (e.g., stimuli-responsive, high cargo encapsulation efficiency, targeting), thus offering new opportunities in targeted and triggered therapeutic release. This Perspective highlights an important development by Poon et al. on tumor targeting in vivo using LbL-engineered nanoparticles containing a pH-responsive poly(ethylene glycol) (PEG) surface layer. Further, we summarize recent progress in the application of LbL particles in the fields of drug, gene, and vaccine delivery and cancer imaging. Finally, we explore future directions in this field, focusing on the biological processing of LbL-assembled particles.
  • Item
    Thumbnail Image
    Engineering Particles for Therapeutic Delivery: Prospects and Challenges
    Yan, Y ; Such, GK ; Johnston, APR ; Best, JP ; Caruso, F (AMER CHEMICAL SOC, 2012-05)
    Nanoengineered particles that can facilitate drug formulation and passively target tumors have reached the clinic in recent years. These early successes have driven a new wave of significant innovation in the generation of advanced particles. Recent developments in enabling technologies and chemistries have led to control over key particle properties, including surface functionality, size, shape, and rigidity. Combining these advances with the rapid developments in the discovery of many disease-related characteristics now offers new opportunities for improving particle specificity for targeted therapy. In this Perspective, we summarize recent progress in particle-based therapeutic delivery and discuss important concepts in particle design and biological barriers for developing the next generation of particles.
  • Item
    Thumbnail Image
    Interfacing Materials Science and Biology for Drug Carrier Design
    Such, GK ; Yan, Y ; Johnston, APR ; Gunawan, ST ; Caruso, F (WILEY-V C H VERLAG GMBH, 2015-04-08)
    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.