School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 49
  • Item
    No Preview Available
    Tutorials and Articles on Best Practices
    Schaak, RE ; Penner, RM ; Buriak, JM ; Caruso, F ; Chhowalla, M ; Gogotsi, Y ; Mulvaney, P ; Parak, WJ ; Weiss, PS (AMER CHEMICAL SOC, 2020-09-22)
  • Item
    Thumbnail Image
    Nanoengineering multifunctional hybrid interfaces using adhesive glycogen nanoparticles.
    Pacchin Tomanin, P ; Zhou, J ; Amodio, A ; Cimino, R ; Glab, A ; Cavalieri, F ; Caruso, F (Royal Society of Chemistry, 2020-06-14)
    Multifunctional and biodegradable nanostructured hybrid interfaces based on biopolymers are potentially useful in many applications in catalysis, bioanalytical sensing and nanomedicine. Herein, we report the engineering of multifunctional hybrid films by assembling adhesive biological nanoparticles composed of lipoate-conjugated phytoglycogen (L-PG). These nano building blocks possess adhesive properties, arising from their amphiphilic nature, and reactive functional disulfide groups. The assembly of L-PG on surfaces enabled the rapid and conformal deposition of a thin film on substrates of varying chemical composition and wettability. The L-PG films showed negligible cytotoxicity and moderate stability under different conditions but displayed enzyme-mediated degradability. In addition, metal nanoparticles were embedded into the L-PG layers to build up multilayered hybrid films. Specifically, gold and silver nanoparticle-loaded L-PG multilayered films with catalytic and surface-enhanced Raman scattering properties were prepared. Finally, we highlight the versatility of the present approach to engineer multifaceted interfaces for catalysis and sensing applications.
  • Item
    Thumbnail Image
    Engineering of Nebulized Metal-Phenolic Capsules for Controlled Pulmonary Deposition
    Ju, Y ; Cortez-Jugo, C ; Chen, J ; Wang, T-Y ; Mitchell, AJ ; Tsantikos, E ; Bertleff-Zieschang, N ; Lin, Y-W ; Song, J ; Cheng, Y ; Mettu, S ; Rahim, MA ; Pan, S ; Yun, G ; Hibbs, ML ; Yeo, LY ; Hagemeyer, CE ; Caruso, F (John Wiley & Sons, 2020-03-18)
    Particle-based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal–phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single-cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.
  • Item
    No Preview Available
    The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mohwald
    Zhao, S ; Caruso, F ; Daehne, L ; Decher, G ; De Geest, BG ; Fan, J ; Feliu, N ; Gogotsi, Y ; Hammond, PT ; Hersam, MC ; Khademhosseini, A ; Kotov, N ; Leporatti, S ; Li, Y ; Lisdat, F ; Liz-Marzan, LM ; Moya, S ; Mulvaney, P ; Rogach, AL ; Roy, S ; Shchukin, DG ; Skirtach, AG ; Stevens, MM ; Sukhorukov, GB ; Weiss, PS ; Yue, Z ; Zhu, D ; Parak, WJ (AMER CHEMICAL SOC, 2019-06)
    Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
  • Item
    Thumbnail Image
    Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies
    Cui, J ; Ju, Y ; Houston, ZH ; Class, JJ ; Fletcher, NL ; Alcantara, S ; Dai, Q ; Howard, CB ; Mahler, SM ; Wheatley, AK ; De Rose, R ; Brannon, PT ; Paterson, BM ; Donnelly, PS ; Thurecht, K ; Caruso, F ; Kent, SJ (WILEY, 2019-05)
    Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.
  • Item
    No Preview Available
    Continuous assembly of polymers via solid phase reactions
    Nam, E ; Kim, J ; Guntari, SN ; Seyler, H ; Fu, Q ; Wong, EHH ; Blencowe, A ; Jones, DJ ; Caruso, F ; Qiao, GG (ROYAL SOC CHEMISTRY, 2014-09)

    The formation of cross-linked polymer films, with tunable thickness, proceeds directionally from the substrate surface by controlled polymerization in the solid state.

  • Item
    Thumbnail Image
    One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering
    Ejima, H ; Richardson, JJ ; Liang, K ; Best, JP ; van Koeverden, MP ; Such, GK ; Cui, J ; Caruso, F (AMER ASSOC ADVANCEMENT SCIENCE, 2013-07-12)
    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
  • Item
    Thumbnail Image
    Stiffness-mediated adhesion of cervical cancer cells to soft hydrogel films
    Best, JP ; Javed, S ; Richardson, JJ ; Cho, KL ; Kamphuis, MMJ ; Caruso, F (ROYAL SOC CHEMISTRY, 2013)
  • Item
    Thumbnail Image
    Design of Degradable Click Delivery Systems
    Such, GK ; Gunawan, ST ; Liang, K ; Caruso, F (WILEY-V C H VERLAG GMBH, 2013-06-13)
    Click chemistry has had a significant impact in the field of materials science over the last 10 years, as it has enabled the design of new hybrid building blocks, leading to multifunctional and responsive materials. One key application for such materials is in the biomedical field, such as gene or drug delivery. However, to meet the functional requirements of such applications, tailored degradability of these materials under biological conditions is critical. There has been an increasing interest in combining click chemistry techniques with a range of degradable or responsive building blocks as well as investigating new or milder chemistries to design click delivery systems that are capable of physiologically relevant degradation. This Feature Article will cover some of the different approaches to synthesize degradable click delivery systems and their investigation for therapeutic release.
  • Item
    No Preview Available
    Standardizing Nanomaterials
    Mulvaney, P ; Parak, WJ ; Caruso, F ; Weiss, PS (AMER CHEMICAL SOC, 2016-11)