School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Relaxin family peptides: structure-activity relationship studies
    Patil, NA ; Rosengren, KJ ; Separovic, F ; Wade, JD ; Bathgate, RAD ; Hossain, MA (WILEY, 2017-05)
    UNLABELLED: The human relaxin peptide family consists of seven cystine-rich peptides, four of which are known to signal through relaxin family peptide receptors, RXFP1-4. As these peptides play a vital role physiologically and in various diseases, they are of considerable importance for drug discovery and development. Detailed structure-activity relationship (SAR) studies towards understanding the role of important residues in each of these peptides have been reported over the years and utilized for the design of antagonists and minimized agonist variants. This review summarizes the current knowledge of the SAR of human relaxin 2 (H2 relaxin), human relaxin 3 (H3 relaxin), human insulin-like peptide 3 (INSL3) and human insulin-like peptide 5 (INSL5). LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
  • Item
    Thumbnail Image
    C-Terminal Modification and Multimerization Increase the Efficacy of a Proline-Rich Antimicrobial Peptide
    Li, W ; O'Brien-Simpson, NM ; Yao, S ; Tailhades, J ; Reynolds, EC ; Dawson, RM ; Otvos, L ; Hossain, MA ; Separovic, F ; Wade, JD (WILEY-V C H VERLAG GMBH, 2017-01-05)
    Two series of branched tetramers of the proline-rich antimicrobial peptide (PrAMP), Chex1-Arg20, were prepared to improve antibacterial selectivity and potency against a panel of Gram-negative nosocomial pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. First, tetramerization was achieved by dithiomaleimide (DTM) conjugation of two C-terminal-cysteine bearing dimers that also incorporated C-terminal peptide chemical modification. DTM-linked tetrameric peptides containing a C-terminal hydrazide moiety on each dimer exhibited highly potent activities in the minimum inhibitory concentration (MIC) range of 0.49-2.33 μm. A second series of tetrameric analogues with C-terminal hydrazide modification was prepared by using alternative conjugation linkers including trans-1,4-dibromo-2-butene, α,α'-dibromo-p-xylene, or 6-bismaleimidohexane to determine the effect of length on activity. Each displayed potent and broadened activity against Gram-negative nosocomial pathogens, particularly the butene-linked tetrameric hydrazide. Remarkably, the greatest MIC activity is against P. aeruginosa (0.77 μm/8 μg mL-1 ) where the monomer is inactive. None of these peptides showed any cytotoxicity to mammalian cells up to 25 times the MIC. A diffusion NMR study of the tetrameric hydrazides showed that the more active antibacterial analogues were those with a more compact structure having smaller hydrodynamic radii. The results show that C-terminal PrAMP hydrazidation together with its rational tetramerization is an effective means for increasing both diversity and potency of PrAMP action.
  • Item
    Thumbnail Image
    Total chemical synthesis of a heterodimeric interchain bis-lactam-linked Peptide: application to an analogue of human insulin-like Peptide 3.
    Karas, J ; Shabanpoor, F ; Hossain, MA ; Gardiner, J ; Separovic, F ; Wade, JD ; Scanlon, DB (Hindawi Limited, 2013)
    Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3), in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity.
  • Item
    Thumbnail Image
    2-Nitroveratryl as a Photocleavable Thiol-Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin
    Karas, JA ; Scanlon, DB ; Forbes, BE ; Vetter, I ; Lewis, RJ ; Gardiner, J ; Separovic, F ; Wade, JD ; Hossain, MA (WILEY-V C H VERLAG GMBH, 2014-07-28)
    Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol-protecting groups. We report the use of 2-nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S-pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc-Cys(oNv)-OH is described together with its use for the solid-phase synthesis of complex cystine-rich peptides, such as insulin.
  • Item
    Thumbnail Image
    A One-Pot Chemically Cleavable Bis-Linker Tether Strategy for the Synthesis of Heterodimeric Peptides
    Patil, NA ; Tailhades, J ; Karas, JA ; Separovic, F ; Wade, JD ; Hossain, MA (WILEY-V C H VERLAG GMBH, 2016-11-14)
    Heterodimeric peptides linked by disulfide bonds are attractive drug targets. However, their chemical assembly can be tedious, time-consuming, and low yielding. Inspired by the cellular synthesis of pro-insulin in which the two constituent peptide chains are expressed as a single-chain precursor separated by a connecting C-peptide, we have developed a novel chemically cleavable bis-linker tether which allows the convenient assembly of two peptide chains as a single "pro"-peptide on the same solid support. Following the peptide cleavage and post-synthetic modifications, this bis-linker tether can be removed in one-step by chemical means. This method was used to synthesize a drug delivery-cargo conjugate, TAT-PKCi peptide, and a two-disulfide bridged heterodimeric peptide, thionin (7-19)-(24-32R), a thionin analogue. To our knowledge, this is the first report of a one-pot chemically cleavable bis-linker strategy for the facile synthesis of cross-bridged two-chain peptides.
  • Item
    Thumbnail Image
    Total Chemical Synthesis of an Intra-A-Chain Cystathionine Human Insulin Analogue with Enhanced Thermal Stability
    Karas, JA ; Patil, NA ; Tailhades, J ; Sani, M-A ; Scanlon, DB ; Forbes, BE ; Gardiner, J ; Separovic, F ; Wade, JD ; Hossain, MA (Wiley, 2016-11-14)
    Despite recent advances in the treatment of diabetes mellitus, storage of insulin formulations at 4 °C is still necessary to minimize chemical degradation. This is problematic in tropical regions where reliable refrigeration is not ubiquitous. Some degradation byproducts are caused by disulfide shuffling of cystine that leads to covalently bonded oligomers. Consequently we examined the utility of the non‐reducible cystine isostere, cystathionine, within the A‐chain. Reported herein is an efficient method for forming this mimic using simple monomeric building blocks. The intra‐A‐chain cystathionine insulin analogue was obtained in good overall yield, chemically characterized and demonstrated to possess native binding affinity for the insulin receptor isoform B. It was also shown to possess significantly enhanced thermal stability indicating potential application to next‐generation insulin analogues.
  • Item
    Thumbnail Image
    Melittin peptides exhibit different activity on different cells and model membranes
    Jamasbi, E ; Batinovic, S ; Sharples, RA ; Sani, M-A ; Robins-Browne, RM ; Wade, JD ; Separovic, F ; Hossain, MA (SPRINGER WIEN, 2014-12)
    Melittin (MLT) is a lytic peptide with a broad spectrum of activity against both eukaryotic and prokaryotic cells. To understand the role of proline and the thiol group of cysteine in the cytolytic activity of MLT, native MLT and cysteine-containing analogs were prepared using solid phase peptide synthesis. The antimicrobial and cytolytic activities of the monomeric and dimeric MLT peptides against different cells and model membranes were investigated. The results indicated that the proline residue was necessary for antimicrobial activity and cytotoxicity and its absence significantly reduced lysis of model membranes and hemolysis. Although lytic activity against model membranes decreased for the MLT dimer, hemolytic activity was increased. The native peptide and the MLT-P14C monomer were mainly unstructured in buffer while the dimer adopted a helical conformation. In the presence of neutral and negatively charged vesicles, the helical content of the three peptides was significantly increased. The lytic activity, therefore, is not correlated to the secondary structure of the peptides and, more particularly, on the propensity to adopt helical conformation.
  • Item
    Thumbnail Image
    Effect of dimerized melittin on gastric cancer cells and antibacterial activity
    Jamasbi, E ; Lucky, SS ; Li, W ; Hossain, MA ; Gopalakrishnakone, P ; Separovic, F (SPRINGER WIEN, 2018-08)
    Melittin is the peptide toxin found in bee venom and is effective against cancer cells. To enhance its activity, a branched dimeric form of melittin was designed. The monomeric form of the peptide was more cytotoxic against gastric cancer cells at low concentrations (1-5 μM) than the dimer form, while the cytotoxic effect was comparable at higher concentrations (10 μM). Confocal microscopy showed that both the monomer and dimer forms of melittin with fluorescent label at the C terminus penetrated the cytoplasm and localized at the cell nucleus and disrupted the cell membrane. The results indicated that both peptides localized in the nucleus and no significant difference in penetration was observed between monomer and dimer of melittin. Although the C and N termini are important for melittin activity, using C terminus for dimerization of the peptide resulted in similar activity for the monomer and dimer against bacteria and gastric cancer cells.
  • Item
    Thumbnail Image
    The Importance of Tryptophan B28 in H2 Relaxin for RXFP2 Binding and Activation
    Chan, LJ ; Wade, JD ; Separovic, F ; Bathgate, RAD ; Hossain, MA (SPRINGER, 2013-03)
  • Item
    Thumbnail Image
    The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity
    Patil, NA ; Bathgate, RAD ; Kocan, M ; Ang, SY ; Tailhades, J ; Separovic, F ; Summers, R ; Grosse, J ; Hughes, RA ; Wade, JD ; Hossain, MA (SPRINGER WIEN, 2016-04)
    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.