School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes
    Ma, HZ ; Canty, AJ ; O'Hair, RAJ (ROYAL SOC CHEMISTRY, 2023-02-07)
    A near thermal two-step catalytic cycle for the selective release of hydrogen from formic acid by mononuclear cuprate anions was revealed using multistage mass spectrometry experiments, deuterium labelling and DFT calculations. In gas-phase ion-molecule reactions, mononuclear copper hydride anions [(L)Cu(H)]- (where L = H-, O2CH-, BH4- and CN-) were found to react with formic acid (HCO2H) to yield [(L)Cu(O2CH)]- and H2. The copper formate anions [(L)Cu(O2CH)]- can decarboxylate via collision-induced dissociation (CID) to reform the copper hydride [(L)Cu(H)]-, thereby closing the two-step catalytic cycle. Analogous labelling experiments with d1-formic acid (DCO2H) reveal that the decarboxylation process also occurs spontaneously. A kinetic study was carried out to provide further insights into the species involved in this reaction. Energetics from density functional theory (DFT) calculations show that the key decarboxylation step can occur without CID, thus in support of experimental observations.
  • Item
    Thumbnail Image
    A photo-switchable molecular capsule: sequential photoinduced processes
    Choudhari, M ; Xu, J ; McKay, A ; Guerrin, C ; Forsyth, C ; Ma, HZ ; Goerigk, L ; O'Hair, RAJ ; Bonnefont, A ; Ruhlmann, L ; Aloise, S ; Ritchie, C (ROYAL SOC CHEMISTRY, 2022-11-30)
    The metastable trilacunary heteropolyoxomolybdate [PMo9O31(py)3]3- - {PMo9}; py = pyridine) and the ditopic pyridyl bearing diarylethene (DAE) (C25H16N2F6S2) self-assemble via a facile ligand replacement methodology to yield the photo-active molecular capsule [(PMo9O31)2(DAE)3]6-. The spatial arrangement and conformation of the three DAE ligands are directed by the surface chemistry of the molecular metal oxide precursor with exclusive ligation of the photo-active antiparallel rotamer to the polyoxometalate (POM) while the integrity of the assembly in solution has been verified by a suite of spectroscopic techniques. Electrocyclisation of the three DAEs occurs sequentially and has been investigated using a combination of steady-state and time-resolved spectroscopies with the discovery of a photochemical cascade whereby rapid photoinduced ring closure is followed by electron transfer from the ring-closed DAE to the POM in the latent donor-acceptor system on subsequent excitation. This interpretation is also supported by computational and detailed spectroelectrochemical analysis. Ring-closing quantum yields were also determined using a custom quantum yield determination setup (QYDS), providing insight into the impact of POM coordination on these processes.
  • Item
    Thumbnail Image
    Synthesis and X-Ray Crystallographic Characterisation of Frustum-Shaped Ligated [Cu18H16(DPPE)6]2+ and [Cu16H14(DPPA)6]2+ Nanoclusters and Studies on Their H2 Evolution Reactions
    Li, J ; Ma, HZ ; Reid, GE ; Edwards, AJ ; Hong, Y ; White, JM ; Mulder, RJ ; O'Hair, RAJ (WILEY-V C H VERLAG GMBH, 2018-02-09)
    We report new structural motifs for Cu nanoclusters that conceptually represent seed crystals for large face-centred cubic (FCC) crystal growth. Kinetically controlled syntheses, high resolution mass spectrometry experiments for determination of the dication formulae and crystallographic characterisation were carried out for [Cu18 H16 (DPPE)6 ][BF4 ][Cl] (DPPE=bis(diphenylphosphino)ethane) and [Cu16 H14 (DPPA)6 ][(BF4 )2 ] (DPPA=bis(diphenylphosphino)amine) polyhydrido nanoclusters, which feature the unprecedented bifrustum and frustum metal-core architecture in metal nanoclusters. The Cu18 nanocluster contains two Cu9 frustum cupolae and the Cu16 nanocluster has one Cu9 frustum cupola and a Cu7 distorted hexagonal-shape base. Gas-phase experiments revealed that both Cu18 H16 and Cu16 H14 cores can spontaneously release H2 upon removal of one bisphosphine capping ligand.
  • Item
    Thumbnail Image
    Using electrospray ionization-tandem mass spectrometry to explore formation and gas-phase chemistry of silver nanoclusters generated from the reaction of silver salts with NaBH4in the presence of bis(diphenylarsino)methane
    Ma, HZ ; McKay, AI ; Canty, AJ ; O'Hair, RAJ (WILEY, 2021-04)
    Electrospray ionization-mass spectrometry (ESI-MS) of mixtures of AgBF4 or AgNO3 with the capping ligand bis(diphenylarsino)methane ((Ph2 As)2 CH2 = dpam) in a solution of acetonitrile revealed the formation of the following cations: [Ag(CH3 CN)(dpam)]+ , [Ag(dpam)2 ]+ , [Ag2 (Cl)(dpam)2 ]+ , and [Ag3 (Cl)2 (dpam)3 ]+ . Addition of NaBH4 to these solutions results in the formation of the cluster cations [Ag2 (BH4 )(dpam)2 ]+ , [Ag2 (BH4 )(dpam)3 ]+ , [Ag3 (H)(BH4 )(dpam)3 ]+ , [Ag3 (BH4 )2 (dpam)3 ]+ , [Ag3 (H)(Cl)(dpam)3 ]+ , and [Ag3 (I)(BH4 )(dpam)3 ]+ , as established by ESI-MS. Use of NaBD4 confirmed that borohydride is the source of the hydride in these clusters. An Orbitrap Fusion LUMOS mass spectrometer was used to explore the gas-phase unimolecular chemistry of selected clusters via multistage mass spectrometry (MSn ) experiments employing low-energy collision-induced dissociation (CID) and high-energy collision-induced dissociation (HCD) experiments. The borohydride containing clusters fragment via two competing pathways: (i) ligand loss and (ii) B-H bond activation involving BH3 loss. Density functional theory (DFT) calculations were used to calculate the energetics of the optimized structures for all precursor ions, fragment ions, and neutrals and to estimate the reaction endothermicities. Generally, there is reasonable agreement between the most abundant product ion formed and the predicted endothermicity of the associated reaction channel. The DFT calculations predicted that the novel dimer [Ag2 (BH4 )(dpam)2 ]+ has a paddlewheel structure in which the dpam and BH4 - ligands bridge both silver centers.