School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 68
  • Item
    Thumbnail Image
    Ultrafast Nanodrum-on-Chip Pixels
    Li, J ; Hutchison, JA ; Smith, D ; Wu, H ; Mulvaney, P (AMER CHEMICAL SOC, 2024-03-15)
    Environmentally friendly, ultrafast display pixels of micrometer sizes are fabricated with nanometer-thick gold films and Si/SiO2 wafers. The color displayed is due to both the plasmon response of the gold film and the optical interference from the Fabry-Peerot cavity formed by the underlying silicon substrate, the semitransparent gold film and the air gap between them. When an electric potential is applied to the gold film, the electrostatic force induces an attraction between the gold film and the silicon wafer. Due to the flexibility of the film, the size of the air gap changes, resulting in a changing color. By applying different driving signals, we have achieved cyan, magenta, and yellow reflected colors. The maximum switching rate of the pixel is primarily determined by the thickness dependence of the metal drum and its Young's modulus and is typically in the MHz regime.
  • Item
    Thumbnail Image
    Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality
    Ponomareva, E ; Volk, K ; Mulvaney, P ; Karg, M (American Chemical Society, 2020-11-17)
    Surface lattice resonances are optical resonances composed of hybridized plasmonic and diffractive modes. These collective resonances occur in periodic arrays of plasmonic nanoparticles with wavelength-scale interparticle distances. The appearance and strength of surface lattice resonances strongly depend on the single particle localized surface plasmon resonance and its spectral overlap with the diffractive modes of the array. Coupling to in-plane orders of diffraction is also strongly affected by the refractive index environment and its symmetry. In this work, we address the impact of the interparticle distance, the symmetry of the refractive index environment, and structural imperfections in self-assembled colloidal monolayers on the plasmonic–diffractive coupling. For this purpose, we prepared hexagonally ordered, nonclose packed monolayers of gold nanoparticles using a fast and efficient, interface-mediated, colloidal self-assembly approach. By tuning the thickness and deformability of the polymer shells, we were able to prepare monolayers with a broad range of interparticle distances. The optical properties of the samples were studied experimentally by UV–Vis spectroscopy and theoretically by finite difference time domain simulations. The measured and simulated spectra allow a comprehensive analysis of the details of electromagnetic coupling in periodic plasmonic arrays. In particular, we identify relevant criteria required for surface lattice resonances in the visible wavelength range with optimized quality factors in self-assembled monolayers.
  • Item
    Thumbnail Image
    Sedimentation of C60 and C70: Testing the Limits of Stokes' Law
    Pearson, J ; Tich, LN ; Colfen, H ; Mulyaney, P (AMER CHEMICAL SOC, 2018-11-01)
    Virtually all dynamic methods for determining particle size on the nanoscale use the Stokes-Einstein-Sutherland (SES) equation to convert the diffusion coefficient into a hydrodynamic radius. The validity of this equation on the nanoscale has not been rigorously validated by experiment. Here we measure the sedimentation rates and diffusion coefficients of C60 and C70 in toluene using analytical ultracentrifugation and compare the results to the SES equation. We find that the SES equation for the drag force (nonslip boundary condition) works down to 1 nm length scales.
  • Item
    Thumbnail Image
    Fabrication of a Three-Dimensional Plasmon Ruler Using an Atomic Force Microscope
    Lu, J ; Liu, S ; Collins, SSE ; Tang, L ; Wei, X ; Mulvaney, P (AMER CHEMICAL SOC, 2019-08-15)
    We have assembled a three-dimensional (3D) plasmon ruler using an atomic force microscope (AFM) tip to manipulate single gold nanocrystals on top of electron beam lithography fabricated base layers. The 3D structures exhibit several polarization-dependent surface plasmon scattering peaks, including symmetric and asymmetric Fano resonances. We map these resonances as a function of the degree of asymmetry of the structure. We show that the coupled surface plasmon resonances are extremely sensitive to the position of the upper particle and that the resonances can be engineered and tuned using an AFM tip to move the upper nanocrystal just a few Angstroms.
  • Item
    Thumbnail Image
    Growth of Gold Nanorods: A SAXS Study
    Seibt, S ; Zhang, H ; Mudie, S ; Foerster, S ; Mulvaney, P (AMER CHEMICAL SOC, 2021-09-16)
    Using simultaneous, in situ optical spectroscopy and time-resolved, small-angle X-ray scattering (SAXS), we have directly monitored the seeded growth of nearly monodisperse gold nanorods using hydroquinone as the reductant. Growth of the rods is much slower than with the ascorbate ion, allowing the rate of growth along both the longitudinal and transverse directions to be independently determined. The thickness of the stabilizing CTAB layer (3.2 ± 0.3 nm) has also been extracted. We find that increasing the hydrogen tetrachloroaurate(III) concentration produces longer rods, while conversely, increasing the hydroquinone concentration reduces the final aspect ratio. The final number of gold rods is smaller than the initial number of seed particles and decreases in the presence of larger concentrations of HAuCl4. The SAXS data reveal an early transition from a spherical morphology to an ellipsoidal one and then to spherically capped cylinders. The growth curve exhibits at least three distinct regimes: an initial phase comprising spherical seed growth, followed by symmetry breaking and slow elongation. A third phase is marked by rapid rod growth and increases in the aspect ratio. This process is temporally well resolved from the initial symmetry breaking but typically occurs when the rods are around 6 nm in diameter using hydroquinone as the reductant. The results provide qualitative support for the “popcorn model” proposed by Edgar et al. [ Formation of Gold Nanorods by a Stochastic “Popcorn” Mechanism. ACS Nano 2012, 6, 1116 1125 ].
  • Item
    Thumbnail Image
    Tuning Single Quantum Dot Emission with a Micromirror
    Yuan, G ; Gomez, D ; Kirkwood, N ; Mulvaney, P (AMER CHEMICAL SOC, 2018-02)
    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.
  • Item
    Thumbnail Image
    Aqueous Synthesis of High-Quality Cu2ZnSnS4 Nanocrystals and Their Thermal Annealing Characteristics
    Ritchie, C ; Chesman, ASR ; Styles, M ; Jasieniak, JJ ; Mulyaney, P (AMER CHEMICAL SOC, 2018-01-30)
    Copper zinc tin sulfide (CZTS) nanocrystal inks are promising candidates for the development of cheap, efficient, scalable, and nontoxic photovoltaic (PV) devices. However, optimization of the synthetic chemistry to achieve these goals remains a key challenge. Herein we describe a single-step, aqueous-based synthesis that yields high-quality CZTS nanocrystal inks while also minimizing residual organic impurities. By exploiting simultaneous redox and crystal formation reactions, square-platelet-like CZTS nanocrystals stabilized by Sn2S64- and thiourea are produced. The CZTS synthesis is optimized by using a combination of inductively coupled plasma analysis, Raman spectroscopy, Fourier transform infrared spectroscopy, and synchrotron powder X-ray diffraction to assess the versatility of the synthesis and identify suitable composition ranges for achieving phase-pure CZTS. It is found that mild heat treatment between 185 and 220 °C is most suitable for achieving this because this temperature range is sufficiently high to thermalize existing ligands and ink additives while minimizing tin loss, which is problematic at higher temperatures. The low temperatures required to process these nanocrystal inks to give CZTS thin films are readily amenable to production-scale processes.
  • Item
    Thumbnail Image
    The Degradation and Blinking of Single CsPbl3 Perovskite Quantum Dots
    Yuan, G ; Ritchie, C ; Ritter, M ; Murphy, S ; Gomez, DE ; Mulvaney, P (AMER CHEMICAL SOC, 2018-06-28)
    We demonstrate using single molecule spectroscopy that inorganic CsPbI3 perovskite quantum dots (PQDs) undergo an irreversible, photoaccelerated reaction with water that results in a blue-shift of the photoluminescence (PL) and ultimately to complete quenching of the emission. We find that decomposition does not take place in the presence of oxygen alone but that it requires light and water. We also analyze the blinking for some stable PQDs and find a continuous distribution of emission states with a linear correlation between intensity and lifetime. We postulate that, in addition to charging and discharging processes, blinking arises from the activation and deactivation of nonradiative recombination centers in the PQDs.
  • Item
    Thumbnail Image
    Spectroelectrochemistry of Colloidal CdSe Quantum Dots
    Ashokan, A ; Mulvaney, P (AMER CHEMICAL SOC, 2021-02-23)
    Solution-phase spectroelectrochemistry was used to study electron injection into colloidal CdSe quantum dots (QDs) with sizes ranging from 3.4 to 11.1 nm in tetrahydrofuran (THF). The absorbance and photoluminescence of the QDs were monitored in response to both charging and discharging cycles, and the optical changes were reversible on a timescale of minutes. Bleaching of the QD 1S3/2h1Se exciton state was used to determine the conduction band energy levels. We found that the negative trion state was stable in THF for hours under an applied cathodic potential. Both the degree of bleaching and the recovery of the exciton state depended on the applied potential. Based on the current and charge measurements, we found that between 10 and 150 electrons were injected into the QDs, depending on the electrode potential and QD size. Most of the electron injection occurred below the band edge and led to quenching of the QD photoluminescence. The potential at which injection into QDs occurred depended on the nature of the QD ligands.
  • Item
    Thumbnail Image
    A reflective display based on the electro-microfluidic assembly of particles within suppressed water-in-oil droplet array
    Shen, S ; Feng, H ; Deng, Y ; Xie, S ; Yi, Z ; Jin, M ; Zhou, G ; Mulvaney, P ; Shui, L (SPRINGERNATURE, 2023-12-05)
    Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create "open" and "closed" states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array. The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures. This eMAP based device can display designed information in three primary colors with ≥170° viewing angle, ~0.14 s switching time, and bistability with an optimized material system. This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display, and the display speed and color quality could be further improved by structure and material optimization; exhibiting a potential reflective display technology.