School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules
    Cui, J ; Yan, Y ; Such, GK ; Liang, K ; Ochs, CJ ; Postma, A ; Caruso, F (AMER CHEMICAL SOC, 2012-08)
    We report a facile approach to immobilize pH-cleavable polymer-drug conjugates in mussel-inspired polydopamine (PDA) capsules for intracellular drug delivery. Our design takes advantage of the facile PDA coating to form capsules, the chemical reactivity of PDA films, and the acid-labile groups in polymer side chains for sustained pH-induced drug release. The anticancer drug doxorubicin (Dox) was conjugated to thiolated poly(methacrylic acid) (PMA(SH)) with a pH-cleavable hydrazone bond, and then immobilized in PDA capsules via robust thiol-catechol reactions between the polymer-drug conjugate and capsule walls. The loaded Dox showed limited release at physiological pH but significant release (over 85%) at endosomal/lysosomal pH. Cell viability assays showed that Dox-loaded PDA capsules enhanced the efficacy of eradicating HeLa cancer cells compared with free drug under the same assay conditions. The reported method provides a new platform for the application of stimuli-responsive PDA capsules as drug delivery systems.
  • Item
    No Preview Available
    Photoinitiated Alkyne-Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels
    Chen, RT ; Marchesan, S ; Evans, RA ; Styan, KE ; Such, GK ; Postma, A ; McLean, KM ; Muir, BW ; Caruso, F (AMER CHEMICAL SOC, 2012-03)
    The photolithographical patterning of hydrogels based solely on the surface immobilization and cross-linking of alkyne-functionalized poly(ethylene glycol) (PEG-tetraalkyne) is described. Photogenerated radicals as well as UV absorption by a copper chelating ligand result in the photochemical redox reduction of Cu(II) to Cu(I). This catalyzes the alkyne-azide click reaction to graft the hydrogels onto an azide-functionalized plasma polymer (N(3)PP) film. The photogenerated radicals were also able to abstract hydrogen atoms from PEG-tetraalkyne to form poly(α-alkoxy) radicals. These radicals can initiate cross-linking by addition to the alkynes and intermolecular recombination to form the PEG hydrogels. Spatially controlling the two photoinitiated reactions by UV exposure through a photomask leads to surface patterned hydrogels, with thicknesses that were tunable from tens to several hundreds of nanometers. The patterned PEG hydrogels (ca. 60 μm wide lines) were capable of resisting the attachment of L929 mouse fibroblast cells, resulting in surfaces with spatially controlled cell attachment. The patterned hydrogel surface also demonstrated spatially resolved chemical functionality, as postsynthetic modification of the hydrogels was successfully carried out with azide-functionalized fluorescent dyes via subsequent alkyne-azide click reactions.