School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Aromatic residues in the C-terminal helix of human apoC-I mediate phospholipid interactions and particle morphology
    James, PF ; Dogovski, C ; Dobson, RCJ ; Bailey, MF ; Goldie, KN ; Karas, JA ; Scanlon, DB ; O'Hair, RAJ ; Perugini, MA (ELSEVIER, 2009-07)
    Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.
  • Item
    Thumbnail Image
    Versatile New Bis(thiosemicarbazone) Bifunctional Chelators: Synthesis, Conjugation to Bombesin(7-14)-NH2, and Copper-64 Radiolabeling
    Paterson, BM ; Karas, JA ; Scanlon, DB ; White, JM ; Donnelly, PS (AMER CHEMICAL SOC, 2010-02-15)
    New bifunctional derivatives of diacetyl-bis(4-methylthiosemicarbazone) (H(2)atsm) have been prepared by a selective transamination reaction of a new dissymmetric bis(thiosemicarbazone) precursor H(2)L(1). The new derivatives contain an aliphatic carboxylic acid (H(2)L(2) and H(2)L(3)), t-butyl carbamate (H(2)L(4)), or ammonium ion (H(2)L(5)) functional group. The new ligands and copper(II) complexes have been characterized by NMR spectroscopy, mass spectrometry, and microanalysis. The complex Cu(II)(L(4)) was structurally characterized by X-ray crystallography and shows the metal center to be in an N(2)S(2) distorted square planar coordination geometry. Electrochemical measurements show that the copper(II) complexes undergo a reversible reduction attributable to a Cu(II)/Cu(I) process. The ligands and the copper(II) complexes featuring a carboxylic acid functional group have been conjugated to the tumor targeting peptide bombesin(7-14)-NH(2). The bifunctional peptide conjugates were radiolabeled with copper-64 in the interest of developing new positron emission tomography (PET) imaging agents. The conjugates were radiolabeled with copper-64 rapidly in high radiochemical purity (>95%) at room temperature under mild conditions and were stable in a cysteine and histidine challenge study.
  • Item
    Thumbnail Image
    Functional and Structural Diversification of the Anguimorpha Lizard Venom System
    Fry, BG ; Winter, K ; Norman, JA ; Roelants, K ; Nabuurs, RJA ; van Osch, MJP ; Teeuwisse, WM ; van der Weerd, L ; Mcnaughtan, JE ; Kwok, HF ; Scheib, H ; Greisman, L ; Kochva, E ; Miller, LJ ; Gao, F ; Karas, J ; Scanlon, D ; Lin, F ; Kuruppu, S ; Shaw, C ; Wong, L ; Hodgson, WC (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-11)
    Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A(2) toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms.
  • Item
    Thumbnail Image
    Gallium-68 Complex of a Macrobicyclic Cage Amine Chelator Tethered to Two Integrin-Targeting Peptides for Diagnostic Tumor Imaging
    Ma, MT ; Neels, OC ; Denoyer, D ; Roselt, P ; Karas, JA ; Scanlon, DB ; White, JM ; Hicks, RJ ; Donnelly, PS (AMER CHEMICAL SOC, 2011-10)
    Tumor-targeting peptides radiolabeled with positron-emitting (68)Ga are promising candidates as new noninvasive diagnostic agents for positron emission tomography (PET). The targeting peptides are tethered to a chelator that forms a stable coordination complex with Ga(3+) that is inert to dissociation of Ga(3+)in vivo. Metal complexes of macrobicyclic hexaamine "sarcophagine" (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) ligands exhibit remarkable stability as a result of the encapsulating nature of the cage amine ligand. A Ga(3+) sarcophagine complex, [Ga-(1-NH(3)-8-NH(2)-sar)](4+), has been characterized using X-ray crystallography, demonstrating that Ga(3+) is coordinated to six nitrogen atoms in a distorted octahedral complex. A bifunctional derivative of (NH(2))(2)sar, possessing two aliphatic linkers with carboxylic acid functional groups has been attached to two cyclic-RGD peptides that target the α(v)β(3) integrin receptor that is overexpressed in some types of tumor tissue. This dimeric species can be radiolabeled with (68)Ga(3+) in >98% radiochemical yield and (68)Ga(3+) does not dissociate from the ligand in the presence of transferrin, an endogenous protein with high affinity for Ga(3+). Biodistribution and micro-PET imaging studies in tumor-bearing mice indicate that the tracer accumulates specifically in tumors with high integrin expression. The high tumor uptake is coupled with low nonspecific uptake and clearance predominantly through the kidneys resulting in high-quality PET images in animal models.
  • Item
    Thumbnail Image
    Defining the Substrate Specificity Determinants Recognized by the Active Site of C-Terminal Src Kinase-Homologous Kinase (CHK) and Identification of β-Synuclein as a Potential CHK Physiological Substrate
    Ia, KK ; Jeschke, GR ; Deng, Y ; Kamaruddin, MA ; Williamson, NA ; Scanlon, DB ; Culvenor, JG ; Hossain, MI ; Purcell, AW ; Liu, S ; Zhu, H-J ; Catimel, B ; Turk, BE ; Cheng, H-C (AMER CHEMICAL SOC, 2011-08-09)
    C-Terminal Src kinase-homologous kinase (CHK) exerts its tumor suppressor function by phosphorylating the C-terminal regulatory tyrosine of the Src-family kinases (SFKs). The phosphorylation suppresses their activity and oncogenic action. In addition to phosphorylating SFKs, CHK also performs non-SFK-related functions by phosphorylating other cellular protein substrates. To define these non-SFK-related functions of CHK, we used the "kinase substrate tracking and elucidation" method to search for its potential physiological substrates in rat brain cytosol. Our search revealed β-synuclein as a potential CHK substrate, and Y127 in β-synuclein as the preferential phosphorylation site. Using peptides derived from β-synuclein and positional scanning combinatorial peptide library screening, we defined the optimal substrate phosphorylation sequence recognized by the CHK active site to be E-x-[Φ/E/D]-Y-Φ-x-Φ, where Φ and x represent hydrophobic residues and any residue, respectively. Besides β-synuclein, cellular proteins containing motifs resembling this sequence are potential CHK substrates. Intriguingly, the CHK-optimal substrate phosphorylation sequence bears little resemblance to the C-terminal tail sequence of SFKs, indicating that interactions between the CHK active site and the local determinants near the C-terminal regulatory tyrosine of SFKs play only a minor role in governing specific phosphorylation of SFKs by CHK. Our results imply that recognition of SFKs by CHK is mainly governed by interactions between motifs located distally from the active site of CHK and determinants spatially separate from the C-terminal regulatory tyrosine in SFKs. Thus, besides assisting in the identification of potential CHK physiological substrates, our findings shed new light on how CHK recognizes SFKs and other protein substrates.
  • Item
    Thumbnail Image
    Macrobicyclic Cage Amine Ligands for Copper Radiopharmaceuticals: A Single Bivalent Cage Amine Containing Two Lys3-bombesin Targeting Peptides
    Ma, MT ; Cooper, MS ; Paul, RL ; Shaw, KP ; Karas, JA ; Scanlon, D ; White, JM ; Blower, PJ ; Donnelly, PS (AMER CHEMICAL SOC, 2011-07-18)
    The synthesis of new cage amine macrobicyclic ligands with pendent carboxylate functional groups designed for application in copper radiopharmaceuticals is described. Reaction of [Cu((NH(2))(2)sar)](2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) with either succinic or glutaric anhydride results in selective acylation of the primary amine atoms of [Cu((NH(2))(2)sar)](2+) to give derivatives with either one or two aliphatic carboxylate functional groups separated from the cage amine framework by either a four- or five-atom linker. The Cu(II) serves to protect the secondary amine nitrogen atoms from acylation, and can be removed to give the free ligands. The newly appended carboxylate functional groups can be used as sites of attachment for cancer-targeting peptides such as Lys(3)-bombesin. The synthesis of the first dimeric sarcophagine-peptide conjugate, possessing two Lys(3)-bombesin peptides tethered to a single cage amine, is presented. This species has been radiolabeled with copper-64 at ambient temperature and there is minimal dissociation of Cu(II) from the conjugate even after two days of incubation in human serum.