School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 25
  • Item
    No Preview Available
    Resolving conjugated polymer film morphology with polarised transmission and time-resolved emission microscopy
    Xu, Y ; Sun, L ; Ghiggino, KP ; Smith, TA (IOP Publishing, 2024-07-01)
    The alignment of chromophores plays a crucial role in determining the optoelectronic properties of materials. Such alignment can make interpretation of fluorescence anisotropy microscopy (FAM) images somewhat ambiguous. The time-resolved emission behaviour can also influence the fluorescence anisotropy. This is particularly the case when probing excitation energy migration between chromophores in a condensed phase. Ideally information concerning the chromophoric alignment, emission decay kinetics and fluorescence anisotropy can be recorded and correlated. We report on the use of polarised transmission imaging (PTI) coupled with both steady-state and time-resolved FAM to enable accurate identification of chromophoric alignment and morphology in thin films of a conjugated polydiarylfluorene. We show that the combination of these three imaging modes presents a comprehensive methodology for investigating the alignment and morphology of chromophores in thin films, particularly for accurately mapping the distribution of amorphous and crystalline phases within the thin films, offering valuable insights for the design and optimization of materials with enhanced optoelectronic performance.
  • Item
    Thumbnail Image
    Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors
    Xu, W ; Niu, M ; Yang, X ; Chen, H ; Cai, X ; Smith, TA ; Ghiggino, KP ; Hao, X (ELSEVIER SCIENCE INC, 2021-01)
    Inorganic lead halide perovskites are attractive optoelectronic materials owing to their relative stability compared to organic cation alternatives. The chemical vapor deposition (CVD) method offers potential for high quality perovskite film growth. The deposition temperature is a critical parameter determining the film quality owing to the melting difference between the precursors. Here, perovskite films were deposited by the CVD method at various temperatures between 500−800 °C. The perovskite phase converts from CsPb2Br5 to CsPbBr3 gradually as the deposition temperature is increased. The grain size of the perovskite films also increases with temperature. The phase transition mechanism was clarified. The photoexcited state dynamics were investigated by spatially and temporally resolved fluorescence measurements. The perovskite film deposited under 750 °C condition is of the CsPbBr3 phase, showing low trap-state density and large crystalline grain size. A photodetector based on perovskite films shows high photocurrent and an on/off ratio of ∼2.5 × 104.
  • Item
    Thumbnail Image
    Morphological Requirements for Nanoscale Electric Field Buildup in a Bulk Heterojunction Solar Cell
    Schwarz, KN ; Mitchell, VD ; Khan, S-U-Z ; Lee, C ; Reinhold, A ; Smith, TA ; Ghiggino, KP ; Jones, DJ ; Rand, BP ; Scholes, GD (AMER CHEMICAL SOC, 2021-01-14)
    The morphology of organic semiconductors is critical to their function in optoelectronic devices and is particularly crucial in the donor-acceptor mixture that comprises the bulk heterojunction of organic solar cells. Here, energy landscapes can play integral roles in charge photogeneration, and recently have been shown to drive the accumulation of charge carriers away from the interface, resulting in the buildup of large nanoscale electric fields, much like a capacitor. In this work we combine morphological and spectroscopic data to outline the requirements for this interdomain charge accumulation, finding that this effect is driven by a three-phase morphology that creates an energetic cascade for charge carriers. By adjusting annealing conditions, we show that domain purity, but not size, is critical for an electro-absorption feature to grow-in. This demonstrates that the energy landscape around the interface shapes the movement of charges and that pure domains are required for charge carrier buildup that results in reduced recombination and large interdomain nanoscale electric fields.
  • Item
    Thumbnail Image
    Spectroscopic study of L-DOPA and dopamine binding on novel gold nanoparticles towards more efficient drug-delivery system for Parkinson's disease
    Kalcec, N ; Peranic, N ; Barbir, R ; Hall, CR ; Smith, TA ; Sani, MA ; Frkanec, R ; Separovic, F ; Vrcek, IV (PERGAMON-ELSEVIER SCIENCE LTD, 2022-03-05)
    Nano-drug delivery systems may potentially overcome current challenges in the treatment of Parkinson's disease (PD) by enabling targeted delivery and more efficient blood-brain penetration ability. This study investigates novel gold nanoparticles (AuNPs) to be used as delivery systems for L-DOPA and dopamine by considering their binding capabilities in the presence and absence of a model protein, bovine serum albumin (BSA). Four different AuNPs were prepared by surface functionalization with polyethylene glycol (PEG), 1-adamantylamine (Ad), 1-adamantylglycine (AdGly), and peptidoglycan monomer (PGM). Fluorescence and UV-Vis measurements demonstrated the strongest binding affinity and L-DOPA/dopamine loading efficiency for PGM-functionalized AuNPs with negligible impact of the serum protein presence. Thermodynamic analysis revealed a spontaneous binding process between L-DOPA or dopamine and AuNPs that predominantly occurred through van der Waals interactions/hydrogen bonds or electrostatic interactions. These results represent PGM-functionalized AuNPs as the most efficient at L-DOPA and dopamine binding with a potential to become a drug-delivery system for neurodegenerative diseases. Detailed investigation of L-DOPA/dopamine interactions with different AuNPs was described here for the first time. Moreover, this study highlights a cost- and time-effective methodology for evaluating drug binding to nanomaterials.
  • Item
    No Preview Available
    A framework for multiexcitonic logic
    Hudson, RJ ; Macdonald, TSC ; Cole, JH ; Schmidt, TW ; Smith, TA ; McCamey, DR (NATURE PORTFOLIO, 2024-02)
    Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation-photoemission) or electrically (charge recombination-separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet-triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.
  • Item
    No Preview Available
    The Multiple Roles of Na Ions in Highly Efficient CZTSSe Solar Cells
    Yang, W ; Ji, Y ; Chen, W ; Pan, Y ; Chen, Z ; Wu, S ; Russo, SP ; Xu, Y ; Smith, TA ; Chesman, A ; Mulvaney, P ; Liu, F (WILEY-V C H VERLAG GMBH, 2024-07)
    Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.
  • Item
    No Preview Available
    Selenium Nanoparticles as Potential Drug-Delivery Systems for the Treatment of Parkinson's Disease
    Kalcec, N ; Peranic, N ; Mamic, I ; Beus, M ; Hall, CR ; Smith, TA ; Sani, MA ; Turcic, P ; Separovic, F ; Vrcek, IV (AMER CHEMICAL SOC, 2023-09-20)
  • Item
    No Preview Available
    Charge Transfer-Mediated Multi-exciton Mechanisms in Weakly Coupled Perylene Dimers
    Manian, A ; Campaioli, F ; Hudson, RJ ; Cole, JH ; Schmidt, TW ; Lyskov, I ; Smith, TA ; Russo, SP (AMER CHEMICAL SOC, 2023-08-21)
  • Item
    Thumbnail Image
    An ITO-Free Kesterite Solar Cell
    Ji, Y ; Chen, W ; Yan, D ; Bullock, J ; Xu, Y ; Su, Z ; Yang, W ; Laird, JS ; Zheng, T ; Wu, N ; Zha, W ; Luo, Q ; Ma, C-Q ; Smith, TA ; Liu, F ; Mulvaney, P (WILEY-V C H VERLAG GMBH, 2024-02)
    Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.
  • Item
    Thumbnail Image
    Quantifying the Relaxation Dynamics of Higher Electronic Excited States in Perylene.
    Hudson, RJ ; Manian, A ; Hall, CR ; Schmidt, TW ; Russo, SP ; Ghiggino, KP ; Smith, TA (American Chemical Society, 2023-08-31)
    Gating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states. The 21B2u state is accessed through single-photon absorption at 250 nm, while the optically dark 21Ag state is excited via the 11B3u state. Population of either state results in subpicosecond relaxation to the 11B3u state, and we quantify 21Ag and 21B2u state lifetimes of 340 and 530 fs, respectively. These lifetimes are significantly longer than the singlet fission time constant from the perylene 21B2u state, suggesting that the higher electronic states of perylene may be useful for gating logical operations.