School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 68
  • Item
    Thumbnail Image
    Spectroscopic and Dynamic Properties of Electronically Excited Pendant Porphyrin Polymers with Backbones of Differing Flexibility
    Stevens, AL ; Awuku, S ; Ghiggino, KP ; Hao, Y ; Novakovic, S ; Steer, RP ; White, JM (American Chemical Society, 2020-12-24)
    A zinc porphyrin-pendant norbornene polymer with a rigid backbone characterized by a 2:1 E/Z isomeric structure ratio has been synthesized, and its spectroscopic and photophysical properties are examined. Zinc tetraphenylporphyrin, the porphyrin-substituted norbornene monomer, and a previously reported zinc porphyrin-pendant polymer with a flexible polymethylene backbone have been used as comparators. Unlike its flexible counterpart, the rigid norbornene polymer exhibits clear exciton splitting of its Soret band, much more rapid relaxation rates of its excited singlet states, and a very small yield of an unusually short-lived triplet state. Unlike the flexible pendant polymer, which exhibits excimeric S2 fluorescence as a result of chromophore rotation, anti-Kasha emission from the norbornene polymer originates primarily from the unperturbed porphyrin E region. The low triplet yield in the polymer is attributed to greatly increased rates of competing internal conversion within the singlet manifold. Nevertheless, upconverted delayed fluorescence that is quenched by oxygen is observed upon intense steady-state Q-band excitation of degassed polymer solutions, signaling direct triplet involvement. Consistent with the polymer’s rigid structure, this biexcitonic process is assigned to ultrafast singlet exciton migration and triplet–triplet annihilation following absorption of a second photon by the small steady-state concentration of polymer triplets.
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Competitive Triplet Formation and Recombination in Crystalline Films of Perylenediimide Derivatives: Implications for Singlet Fission
    Masoomi-Godarzi, S ; Hall, CR ; Zhang, B ; Gregory, MA ; White, JM ; Wong, WWH ; Ghiggino, KP ; Smith, TA ; Jones, DJ (AMER CHEMICAL SOC, 2020-05-28)
    Developing photostable compounds that undergo quantitative singlet fission (SF) is a key challenge. As SF necessitates electron transfer between neighboring molecules, the SF rate is highly sensitive to intermolecular coupling in the solid state. We investigate SF in thin films for a series of perylenediimide (PDI) molecules. By adding different substituents at the imide positions, the packing of the molecules in the solid state can be changed. The relationship between SF parameters and the stacked geometry in PDI films is investigated, with two-electron direct coupling found to be the main SF mechanism. Time-resolved emission and transient absorption data show that all of the PDI films undergo SF although with different rates and yields varying from 35 to 200%. The results show that PDI1 and 2, which are stacked PDI pairs twisted out of alignment along the highest occupied molecular orbital to lowest unoccupied molecular orbital transition, exhibit faster and more efficient SF up to 200% yield. We demonstrate that both triplet formation and decay rates are highly sensitive to the ordering of the molecules within a film. The results of this study will assist in the design of optimized structures with a fast SF rate and low recombination rate that are required for useful light harvesting applications.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    Cellular Up-regulation of Nedd4 Family Interacting Protein 1 (Ndfip1) using Low Levels of Bioactive Cobalt Complexes
    Schieber, C ; Howitt, J ; Putz, U ; White, JM ; Parish, CL ; Donnelly, PS ; Tan, S-S (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-03-11)
    The delivery of metal ions using cell membrane-permeable metal complexes represents a method for activating cellular pathways. Here, we report the synthesis and characterization of new [Co(III)(salen)(acac)] complexes capable of up-regulating the ubiquitin ligase adaptor protein Ndfip1. Ndfip1 is a neuroprotective protein that is up-regulated in the brain after injury and functions in combination with Nedd4 ligases to ubiquitinate harmful proteins for removal. We previously showed that Ndfip1 can be increased in human neurons using CoCl(2) that is toxic at high concentration. Here we demonstrate a similar effect can be achieved by low concentrations of synthetic Co(III) complexes that are non-toxic and designed to be activated following cellular entry. Activation is achieved by intracellular reduction of Co(III) to Co(II) leading to release of Co(II) ions for Ndfip1 up-regulation. The cellular benefit of Ndfip1 up-regulation by Co(III) complexes includes demonstrable protection against cell death in SH-SY5Y cells during stress. In vivo, focal delivery of Co(III) complexes into the adult mouse brain was observed to up-regulate Ndfip1 in neurons. These results demonstrate that a cellular response pathway can be advantageously manipulated by chemical modification of metal complexes, and represents a significant step of harnessing low concentration metal complexes for therapeutic benefit.
  • Item
    Thumbnail Image
    Oxidative damage of proline residues by nitrate radicals (NO3): a kinetic and product study
    Nathanael, JG ; White, JM ; Richter, A ; Nuske, MR ; Wille, U (ROYAL SOC CHEMISTRY, 2020-09-21)
    Tertiary amides, such as in N-acylated proline or N-methyl glycine residues, react rapidly with nitrate radicals (NO3˙) with absolute rate coefficients in the range of 4-7 × 108 M-1 s-1 in acetonitrile. The major pathway proceeds through oxidative electron transfer (ET) at nitrogen, whereas hydrogen abstraction is only a minor contributor under these conditions. However, steric hindrance at the amide, for example by alkyl side chains at the α-carbon, lowers the rate coefficient by up to 75%, indicating that NO3˙-induced oxidation of amide bonds proceeds through initial formation of a charge transfer complex. Furthermore, the rate of oxidative damage of proline and N-methyl glycine is significantly influenced by its position in a peptide. Thus, neighbouring peptide bonds, particularly in the N-direction, reduce the electron density at the tertiary amide, which slows down the rate of ET by up to one order of magnitude. The results from these model studies suggest that the susceptibility of proline residues in peptides to radical-induced oxidative damage should be considerably reduced, compared with the single amino acid.
  • Item
    Thumbnail Image
    Triggered and Tunable Hydrogen Sulfide Release from Photogenerated Thiobenzaldehydes
    Xiao, Z ; Bonnard, T ; Shakouri-Motlagh, A ; Wylie, RAL ; Collins, J ; White, J ; Heath, DE ; Hagemeyer, CE ; Connal, LA (WILEY-V C H VERLAG GMBH, 2017-08-22)
    Hydrogen sulfide (H2 S) has been identified as an important cell-signaling mediator and has a number of biological functions, such as vascular smooth muscle relaxation, neurotransmission, and regulation of inflammation. A facile and versatile approach for H2 S production initiated by light irradiation and controlled by reaction with an amine or an amino acid was developed. The donor was synthesized in a one-pot reaction, and simple crystallization led to a yield of approximately 90 %. The synthetic strategy is scalable and versatile, and the H2 S donors can be expressed ina number of different molecular and macromolecular forms, including crystalline small-molecule compounds, water-soluble polymers, polystyrene films, and hydrogels. The H2 S donors based on polystyrene film and hydrogel were used as cell-culture scaffolds. The H2 S donor based on water-soluble polymer was applied in photocontrolled inhibition of P-selectin expression on human platelets and subsequent regulation of platelet aggregation. This study provides the simplest controllable H2 S source to study its biological functions. The developed materials are also new therapeutic platforms to deliver H2 S, as there is no accumulation of toxic byproducts, and the donor materials from polystyrene films and hydrogels can be readily removed after releasing H2 S.
  • Item
    Thumbnail Image
    Guest‐induced Assembly of Bis(thiosemicarbazonato) Zinc(II) Coordination Nanotubes
    Paterson, BM ; White, KF ; White, JM ; Abrahams, BF ; Donnelly, PS (Wiley, 2017-07-10)
    Abstract A ZnII complex of the dianionic tetradentate ligand formed by deprotonation of glyoxal‐bis(4‐phenyl‐3‐thiosemicarbazone) (H2gtsp) is a [3+3] trinuclear triangular prism. Recrystallization of this complex in the presence of either CO2, CS2, or CH3CN leads to the formation of [4+4] open‐ended charge‐neutral tetranuclear coordination nanotubes, approximately 2 nm in length and with internal dimensions large enough to accommodate linear guest molecules, which serve to template their formation. Upon removal of the templating molecules the nanotubes demonstrated reversible sorption of CO2 with an isosteric enthalpy of sorption of 28 kJ mol−1 at low loading.
  • Item
    Thumbnail Image
    Guest-induced Assembly of Bis(thiosemicarbazonato) Zinc(II) Coordination Nanotubes
    Paterson, BM ; White, KF ; White, JM ; Abrahams, BF ; Donnelly, PS (Wiley, 2017-07-10)
    A ZnII complex of the dianionic tetradentate ligand formed by deprotonation of glyoxal‐bis(4‐phenyl‐3‐thiosemicarbazone) (H2gtsp) is a [3+3] trinuclear triangular prism. Recrystallization of this complex in the presence of either CO2, CS2, or CH3CN leads to the formation of [4+4] open‐ended charge‐neutral tetranuclear coordination nanotubes, approximately 2 nm in length and with internal dimensions large enough to accommodate linear guest molecules, which serve to template their formation. Upon removal of the templating molecules the nanotubes demonstrated reversible sorption of CO2 with an isosteric enthalpy of sorption of 28 kJ mol−1 at low loading.
  • Item
    Thumbnail Image
    Dihydro-β-agarofurans from the Australian Endemic Rainforest Plant Denhamia pittosporoides Inhibit Leucine Transport in Prostate Cancer Cells
    Wibowo, M ; Wang, Q ; Holst, J ; White, JM ; Hofmann, A ; Davis, RA (WILEY-V C H VERLAG GMBH, 2016-12)
    Abstract Two previously unknown dihydro‐β‐agarofuran sesquiterpenoids, denhaminol I (1) and denhaminol J (2), together with four related and known metabolites, 1α,2α,6β,15‐tetraacetoxy‐9α‐benzoyloxy‐8‐oxodihydro‐β‐agarofuran (3), wilforsinine F (4), 1α,2α,6β,8α,15‐pentaacetoxy‐9α‐benzoyloxydihydro‐β‐agarofuran (5), and 1α,2α,6β,15‐tetraacetoxy‐9β‐benzoyloxydihydro‐β‐agarofuran (6), were isolated from the leaves of an Australian rainforest plant, Denhamia pittosporoides. The structures of compounds 1 and 2 were determined by analysis of their 1D/2D NMR and MS data. The absolute configuration of compound 1 was established by single‐crystal X‐ray diffraction analysis. Compounds 1 and 4 were shown to inhibit leucine transport in the human prostate cancer cell line LNCaP, with IC50 values of 51.5 and 95.5 μm, respectively. Both compounds 1 and 4 were more potent than the l‐type amino acid transporter (LAT) family inhibitor 2‐aminobicyclo[2.2.1]‐heptane‐2‐carboxylic acid (BCH). This is the first report of dihydro‐β‐agarofurans from D. pittosporoides.