School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 783
  • Item
    Thumbnail Image
    Time-resolved emission microscopy of light-induced aggregation of luminescent polymers
    Xu, Y ; Zhou, J ; Smith, TA (IOP Publishing, 2019-12-23)
    Photon pressure has been used to induce the aggregation from solution of a series of photoluminescent conjugated polyelectrolytes containing tetraphenylethene units. These polymers show steady-state and time-resolved emission properties that are dependent on the local chromophore environment that can be influenced by the degree of intra- and inter-molecular interactions, which enables the photoaggregation process to be monitored by time-resolved fluorescence imaging techniques. Structural differences in the polymer lead to variations in the photo-induced aggregation behaviour.
  • Item
    Thumbnail Image
    Light losses from scattering in luminescent solar concentrator waveguides
    Breukers, RD ; Smith, GJ ; Stirrat, HL ; Swanson, AJ ; Smith, TA ; Ghiggino, KP ; Raymond, SG ; Winch, NM ; Clarke, DJ ; Kay, AJ (OPTICAL SOC AMER, 2017-04-01)
    The reductions in the transmission of emission originating from a fluorophore dissolved in a polymer matrix due to light scattering were compared in two forms of planar waveguides used as luminescent solar concentrators: a thin film of poly(methylmethacrylate) (PMMA) spin-coated on a glass plate and a solid PMMA plate of the same dimensions. The losses attributable to light scattering encountered in the waveguide consisting of the thin film of polymer coated on a glass plate were not detectable within experimental uncertainty, whereas the losses in the solid polymer plate were significant. The losses in the solid plate are interpreted as arising from light-scattering centers comprising minute bubbles of vapor/gas, incomplete polymerization or water clusters that are introduced during or after the thermally induced polymerization process.
  • Item
    Thumbnail Image
    Resolving the Mechanisms of Photocurrent Improvement in Ternary Organic Solar Cells
    Bi, PQ ; Hall, CR ; Yin, H ; So, SK ; Smith, TA ; Ghiggino, KP ; Hao, XT (AMER CHEMICAL SOC, 2019-08-01)
    The ultralow band gap small-molecule IEICO-4F has been employed as a secondary acceptor in both fullerene-based (PTB7-Th:PC71BM) and nonfullerene-based (PBDB-T:ITIC) ternary organic solar cells (OSCs). Structural characterization methods combined with ultrafast spectroscopy have been applied to resolve the mechanisms, leading to the observed improvement in device efficiency upon addition of IEICO-4F. It is shown that IEICO-4F forms ternary mixed domains in the host systems and improves the device efficiency by broadening the absorption spectral range and enhancing both charge separation and charge transport. The enhanced crystallinity of the semiconductor polymer electron donors in the presence of the EIECO-4 provides additional channels for ultrafast charge transfer and transport compared to binary systems. The optimum ternary blend formulations required to improve device efficiencies are reported. This work provides new insights into the fabrication of high-performance ternary OSCs.
  • Item
    Thumbnail Image
    Optimizing the Crystallinity and Phase Separation of PTB7:PC71BM Films by Modified Graphene Oxide
    Lv, C-K ; Zheng, F ; Yang, X-Y ; Bi, P-Q ; Niu, M-S ; Wang, Y-Z ; Smith, TA ; Ghiggino, KP ; Hao, X-T (American Chemical Society, 2018-02-08)
    A facile method is proposed to obtain modified shorn graphene oxide (DDAB-sGO) with improved dispersion in organic solvents. Didodecyl dimethylammonium bromide (DDAB)-sGO, which exhibits good dispersibility in the nonpolar solvent o-dichlorobenzene, was obtained via the sono-Fenton reaction and DDAB ionic functionalization. DDAB-sGO was used in the preparation of conjugated polymer:fullerene blend composites. UV–visible absorption spectra, steady-state photoluminescence spectra, fluorescence decay, and grazing incidence X-ray scattering measurements were applied to characterize morphologies, structural features, and charge-transport characteristics of the composites. Doped into poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) conjugated polymer blends, DDAB-sGO is shown to facilitate increased crystallinity and phase separation of PTB7 and PC71BM to achieve a more optimal morphology for bulk heterojunction solar cells, resulting in a ∼12% enhancement in power conversion efficiency over the undoped PTB7:PC71BM blend.
  • Item
    Thumbnail Image
    Spatially Resolved Photophysical Dynamics in Perovskite Microplates Fabricated Using an Antisolvent Treatment
    Xu, W-L ; Niu, M-S ; Yang, X-Y ; Bi, P-Q ; Zhang, K-N ; Xiong, C ; Yuan, H-C ; Smith, TA ; Ghiggino, KP ; Hao, X-T (American Chemical Society, 2017-11-30)
    Perovskite microplates have important implications in the fields of functional electronics and optoelectronics. We report a facile strategy, antisolvent treatment for the growth of perovskite microplates. The morphology and crystalline quality of the microplates could be controlled by the amount of the chlorobenzene antisolvent used. An appropriate amount of antisolvent facilitates the formation of high-quality perovskite microplates with no residual precursor remaining. Spatially and temporally resolved fluorescence measurements demonstrate the heterogeneity of defect-state density and recombination processes in various perovskite microplate regions. The body center shows higher defect state density when compared with that at the edge or the corner of the microplate. Excessive antisolvent degrades the microplates into smaller particles. The results of this study reveal the factors that influence the crystallization process and photophysical dynamics of perovskite microplates.
  • Item
    Thumbnail Image
    Poly(3-hexylthiophene) coated graphene oxide for improved performance of bulk heterojunction polymer solar cells
    Zheng, F ; Yang, X-Y ; Bi, P-Q ; Niu, M-S ; Lv, C-K ; Feng, L ; Qin, W ; Wang, Y-Z ; Hao, X-T ; Ghiggino, KP (Elsevier, 2017-05-01)
    An effective method for preparing poly(3-hexylthiophene) (P3HT) coated graphene oxide (GO), (P-GO), based on an ethanol mediated mixing and solvent evaporation method is described. P-GO exhibits good dispersibility in the non-polar solvent o-dichlorobenzene (DCB) allowing the preparation of polymer blend composites. P-GO was doped into P3HT: PCBM blends by solution mixing and shown to facilitate phase separation of P3HT and PCBM in P3HT: PCBM blend films to achieve a more optimum morphology for polymer photovoltaic cells. Bulk heterojunction P3HT: PCBM solar cells exhibit ∼18% power conversion efficiency enhancement in the presence of P-GO.
  • Item
    Thumbnail Image
    Synthesis and Characterisation of Helicate and Mesocate Forms of a Double-Stranded Diruthenium(ii) Complex of a Di(terpyridine) Ligand
    Flint, KL ; Collins, JG ; Bradley, SJ ; Smith, TA ; Sumby, C ; Keene, FR (CSIRO Publishing, 2019)
    A diruthenium(II) complex involving the di(terpyridine) ligand 1,2-bis{5-(5″-methyl-2,2′:6′,2″-terpyridinyl)}ethane was synthesised by heating an equimolar ratio of RuCl3 and the ligand under reflux conditions in ethylene glycol for 3 days, realising double-stranded helicate and mesocate forms which were chromatographically separated. The two species were obtained in relatively low yield (each ~7–9 %) from the reaction mixture. X-Ray structural studies revealed differences in the cavity sizes of the two structures, with the helicate structure having a significantly smaller cavity. Furthermore, the helicate and mesocate forms pack with notably different arrangements of the structures with the helicate having large solvent and anion filled pores. 1D/2D NMR studies revealed rigidity in the mesocate structure relative to that of the helicate, such that the –CH2CH2– signal was split in the former and appeared as a singlet in the latter. In a manner analogous to the behaviour of the parent [Ru(tpy)2]2+ coordination moiety (tpy = 2,2′:6′,2″-terpyridine), photophysical studies indicated that both the helicate and mesocate forms were non-emissive at ~610 nm at room temperature, but at 77 K in n-butyronitrile, both isomers showed emission at ~610 nm (λex 472 nm). However, the temporal emission characteristics were very different: time-resolved studies showed the emission of the helicate species decayed with a dominant emission lifetime of ~10 μs (similar to the emissive properties of free [Ru(tpy)2]2+ under the same conditions), whereas for the mesocate the emission lifetime was at least three orders of magnitude lower (~4 ns).
  • Item
    Thumbnail Image
    Low-Bandgap Conjugated Polymer Dots for Near-Infrared Fluorescence Imaging
    Rohatgi, CV ; Harada, T ; Need, EF ; Krasowska, M ; Beattie, DA ; Dickenson, GD ; Smith, TA ; Kee, TW (AMER CHEMICAL SOC, 2018-09)
    Low-bandgap conjugated polymers attract significant research interests because of their broad light absorption spectra in the red and near-infrared regions, making them desirable materials for solar photovoltaics. To date, low-bandgap conjugated polymers yield some of the best power conversion efficiencies offered by polymer solar cells. In addition to their applications as solar photovoltaic materials, nanoparticles of these polymers may be potentially beneficial for cell imaging because of their red and near-infrared absorption features, which are required for significant light penetration into biological samples. In this work, conjugated polymer dots (CPdots) of PCPDTBT, PSBTBT, PTB7, PCDTBT, and PBDTTPD are prepared in aqueous solution using nanoprecipitation. The maximum fluorescence wavelengths of these CPdots range from 800 to 1000 nm. The CPdots exhibit an average zeta potential of -30 mV, giving rise to colloidal stability of these nanoparticles. Dynamic light scattering results show that the CPdots have a hydrodynamic diameter of approximately 100 nm. Furthermore, analyses of atomic force microscopy images of the low-bandgap donor-acceptor CPdots show an average height of approximately 20 nm. The CPdots are introduced to live THP-1 cells, a human monocytic cell line, and the internalization of CPdots by these cells is observed. Confocal fluorescence microscopy images of cells labeled with the low-bandgap CPdots show the presence of these bright nanoparticles in the cells. In short, we demonstrate the preparation of low-bandgap CPdots as an aqueous dispersion and their applications in cell imaging.
  • Item
    Thumbnail Image
    Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films
    Yu, M-N ; Soleimaninejad, H ; Lin, J-Y ; Zuo, Z-Y ; Liu, B ; Bo, Y-F ; Bai, L-B ; Han, Y-M ; Smith, TA ; Xu, M ; Wu, X-P ; Dunstan, DE ; Xia, R-D ; Xie, L-H ; Bradley, DDC ; Huang, W (AMER CHEMICAL SOC, 2018-01-18)
    We demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures. Besides, β-conformational regions have larger fluorescence anisotropy for the low molecular rotational motion and high chain orientation, while the low anisotropy in glassy conformational regions shows more rotational freedom of the chain and efficient energy migration from amorphous regions to β-conformation as a whole. Finally, ultrastable ASE threshold in the PODPF β-conformational films also confirms its potential application in organic lasers. In this regard, FLIM and FAIM measurements provide an effective platform to explore the fundamental photophysical process of conformational transitions in conjugated polymer.
  • Item
    Thumbnail Image
    Sedimentation of C60 and C70: Testing the Limits of Stokes' Law
    Pearson, J ; Tich, LN ; Colfen, H ; Mulyaney, P (AMER CHEMICAL SOC, 2018-11-01)
    Virtually all dynamic methods for determining particle size on the nanoscale use the Stokes-Einstein-Sutherland (SES) equation to convert the diffusion coefficient into a hydrodynamic radius. The validity of this equation on the nanoscale has not been rigorously validated by experiment. Here we measure the sedimentation rates and diffusion coefficients of C60 and C70 in toluene using analytical ultracentrifugation and compare the results to the SES equation. We find that the SES equation for the drag force (nonslip boundary condition) works down to 1 nm length scales.