School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 141
  • Item
    Thumbnail Image
    Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors
    Xu, W ; Niu, M ; Yang, X ; Chen, H ; Cai, X ; Smith, TA ; Ghiggino, KP ; Hao, X (ELSEVIER SCIENCE INC, 2021-01)
    Inorganic lead halide perovskites are attractive optoelectronic materials owing to their relative stability compared to organic cation alternatives. The chemical vapor deposition (CVD) method offers potential for high quality perovskite film growth. The deposition temperature is a critical parameter determining the film quality owing to the melting difference between the precursors. Here, perovskite films were deposited by the CVD method at various temperatures between 500−800 °C. The perovskite phase converts from CsPb2Br5 to CsPbBr3 gradually as the deposition temperature is increased. The grain size of the perovskite films also increases with temperature. The phase transition mechanism was clarified. The photoexcited state dynamics were investigated by spatially and temporally resolved fluorescence measurements. The perovskite film deposited under 750 °C condition is of the CsPbBr3 phase, showing low trap-state density and large crystalline grain size. A photodetector based on perovskite films shows high photocurrent and an on/off ratio of ∼2.5 × 104.
  • Item
    Thumbnail Image
    Morphological Requirements for Nanoscale Electric Field Buildup in a Bulk Heterojunction Solar Cell
    Schwarz, KN ; Mitchell, VD ; Khan, S-U-Z ; Lee, C ; Reinhold, A ; Smith, TA ; Ghiggino, KP ; Jones, DJ ; Rand, BP ; Scholes, GD (AMER CHEMICAL SOC, 2021-01-14)
    The morphology of organic semiconductors is critical to their function in optoelectronic devices and is particularly crucial in the donor-acceptor mixture that comprises the bulk heterojunction of organic solar cells. Here, energy landscapes can play integral roles in charge photogeneration, and recently have been shown to drive the accumulation of charge carriers away from the interface, resulting in the buildup of large nanoscale electric fields, much like a capacitor. In this work we combine morphological and spectroscopic data to outline the requirements for this interdomain charge accumulation, finding that this effect is driven by a three-phase morphology that creates an energetic cascade for charge carriers. By adjusting annealing conditions, we show that domain purity, but not size, is critical for an electro-absorption feature to grow-in. This demonstrates that the energy landscape around the interface shapes the movement of charges and that pure domains are required for charge carrier buildup that results in reduced recombination and large interdomain nanoscale electric fields.
  • Item
    Thumbnail Image
    Electronic spectroscopy and photophysics of calix[4]azulene
    Stevens, AL ; Yeow, C ; White, JM ; Bradley, SJ ; Ghiggino, KP ; Steer, RP (ELSEVIER SCIENCE SA, 2021-01-15)
    Calix[4]azulene is a non-alternant aromatic calixarene composed of four azulene chromophores linked by methylene groups. Its photochemical stability, photophysical properties and an analysis of its electronic spectra are reported using monomeric azulene as a known reference standard. The molecule is stable when excited in its visible and near uv absorptions and, unlike azulene, produces no measurable “anti-Kasha” fluorescence when excited to its second excited singlet state, S2. This lack of fluorescence places the lifetime of the initially excited, photochemically stable S2 species at less than 1 picosecond. A significant, bathochromic shift of the S2 absorption band system in the calixarene, and the appearance of an additional weak, broad absorption immediately to the red signals significant intramolecular chromophore interaction. Femtosecond transient absorption spectroscopy using excitation in this red-shifted tail of the S2 band system reveals a very weak transient signal most of which decays within one ps, but with suggestions of a slightly longer-lived underlying component. No longer-lived T1 triplet transient is observed. A complete analysis of the data using monomeric azulene as a reference suggests, following elimination of several alternate mechanisms, that the initially excited S2 species may be relaxing via a novel singlet-singlet fission process.
  • Item
    Thumbnail Image
    Growth of Gold Nanorods: A SAXS Study
    Seibt, S ; Zhang, H ; Mudie, S ; Foerster, S ; Mulvaney, P (AMER CHEMICAL SOC, 2021-09-16)
    Using simultaneous, in situ optical spectroscopy and time-resolved, small-angle X-ray scattering (SAXS), we have directly monitored the seeded growth of nearly monodisperse gold nanorods using hydroquinone as the reductant. Growth of the rods is much slower than with the ascorbate ion, allowing the rate of growth along both the longitudinal and transverse directions to be independently determined. The thickness of the stabilizing CTAB layer (3.2 ± 0.3 nm) has also been extracted. We find that increasing the hydrogen tetrachloroaurate(III) concentration produces longer rods, while conversely, increasing the hydroquinone concentration reduces the final aspect ratio. The final number of gold rods is smaller than the initial number of seed particles and decreases in the presence of larger concentrations of HAuCl4. The SAXS data reveal an early transition from a spherical morphology to an ellipsoidal one and then to spherically capped cylinders. The growth curve exhibits at least three distinct regimes: an initial phase comprising spherical seed growth, followed by symmetry breaking and slow elongation. A third phase is marked by rapid rod growth and increases in the aspect ratio. This process is temporally well resolved from the initial symmetry breaking but typically occurs when the rods are around 6 nm in diameter using hydroquinone as the reductant. The results provide qualitative support for the “popcorn model” proposed by Edgar et al. [ Formation of Gold Nanorods by a Stochastic “Popcorn” Mechanism. ACS Nano 2012, 6, 1116 1125 ].
  • Item
    Thumbnail Image
    Spectroelectrochemistry of Colloidal CdSe Quantum Dots
    Ashokan, A ; Mulvaney, P (AMER CHEMICAL SOC, 2021-02-23)
    Solution-phase spectroelectrochemistry was used to study electron injection into colloidal CdSe quantum dots (QDs) with sizes ranging from 3.4 to 11.1 nm in tetrahydrofuran (THF). The absorbance and photoluminescence of the QDs were monitored in response to both charging and discharging cycles, and the optical changes were reversible on a timescale of minutes. Bleaching of the QD 1S3/2h1Se exciton state was used to determine the conduction band energy levels. We found that the negative trion state was stable in THF for hours under an applied cathodic potential. Both the degree of bleaching and the recovery of the exciton state depended on the applied potential. Based on the current and charge measurements, we found that between 10 and 150 electrons were injected into the QDs, depending on the electrode potential and QD size. Most of the electron injection occurred below the band edge and led to quenching of the QD photoluminescence. The potential at which injection into QDs occurred depended on the nature of the QD ligands.
  • Item
    Thumbnail Image
    Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health
    Zhu, W ; Hutchison, JA ; Dong, M ; Li, M (AMER CHEMICAL SOC, 2021-05-28)
    The sensitive and selective detection of biomarkers for human health remains one of the grand challenges of the analytical sciences. Compared to established methods (colorimetric, (chemi) luminescent), surface-enhanced Raman spectroscopy (SERS) is an emerging alternative with enormous potential for ultrasensitive biological detection. Indeed even attomolar (10-18 M) detection limits are possible for SERS due to an orders-of-magnitude boosting of Raman signals at the surface of metallic nanostructures by surface plasmons. However, challenges remain for SERS assays of large biomolecules, as the largest enhancements require the biomarker to enter a "hot spot" nanogap between metal nanostructures. The frequency-shift SERS method has gained popularity in recent years as an alternative assay that overcomes this drawback. It measures frequency shifts in intense SERS peaks of a Raman reporter during binding events on biomolecules (protein coupling, DNA hybridization, etc.) driven by mechanical transduction, charge transfer, or local electric field effects. As such, it retains the excellent multiplexing capability of SERS, with multiple analytes being identifiable by a spectral fingerprint in a single read-out. Meanwhile, like refractive index surface plasmon resonance methods, frequency-shift SERS measures the shift of an intense signal rather than resolving a peak above noise, easing spectroscopic resolution requirements. SERS frequency-shift assays have proved particularly suitable for sensing large, highly charged biomolecules that alter hydrogen-bonding networks upon specific binding. Herein we discuss the frequency-shift SERS method and promising applications in (multiplex) biomarker sensing as well as extensions to ion and gas sensing and much more.
  • Item
    Thumbnail Image
    Unusual Alternating Crystallization-Induced Emission Enhancement Behavior in Nonconjugated ω-Phenylalkyl Tropylium Salts
    Crocker, RD ; Pace, DP ; Zhang, B ; Lyons, DJM ; Bhadbhade, MM ; Wong, WWH ; Binh, KM ; Thanh, VN (American Chemical Society, 2021-11-22)
    The alternating physical properties, especially melting points, of α,ω-disubstituted n-alkanes and their parent n-alkanes had been known since Baeyer’s report in 1877. There is, however, no general and comprehensive explanation for such a phenomenon. Herein, we report the synthesis and examination of a series of novel ω-phenyl n-alkyl tropylium tetrafluoroborates, which also display alternation in their physicochemical characters. Despite being organic salts, the compounds with odd numbers of carbons in the alkyl bridge exist as room temperature ionic liquids. In stark contrast to this, the analogues with even numbers of carbons in the linker are crystalline solids. These solid nonconjugated molecules exhibit curious photoluminescent properties, which can be attributed to their ability to form through-space charge-transfer complexes to cause crystallization-induced emission enhancement. Most notably, the compound with the highest photoluminescent quantum yield in this series showed an unusual arrangement of carbocationic dimer in the solid state. A combination of XRD analysis and ab initio calculations revealed interesting insights into these systems.
  • Item
    Thumbnail Image
    Suppressing Kinetic Aggregation of Non-Fullerene Acceptor via Versatile Alloy States Enables High-Efficiency and Stable Ternary Polymer Solar Cells
    Zhang, K-N ; Guo, J-J ; Zhang, L-J ; Qin, C-C ; Yin, H ; Gao, X-Y ; Hao, X-T (Wiley, 2021-05-17)
    Despite considerable advances devoted to improving the operational stability of organic solar cells (OSCs), the metastable morphology degradation remains a challenging obstacle for their practical application. Herein, the stabilizing function of the alloy states in the photoactive layer from the perspective of controlling the aggregation characteristics of non‐fullerene acceptors (NFAs), is revealed. The alloy‐like model is adopted separately into host donor and acceptor materials of the state‐of‐the‐art binary PM6:BTP‐4Cl blend with the self‐stable polymer acceptor PDI‐2T and small molecule donor DRCN5T as the third components, delivering the simultaneously enhanced photovoltaic efficiency and storage stability. In such ternary systems, two separate arguments can rationalize their operating principles: (1) the acceptor alloys strengthen the conformational rigidity of BTP‐4Cl molecules to restrain the intramolecular vibrations for rapid relaxation of high‐energy excited states to stabilize BTP‐4Cl acceptor. (2) The donor alloys optimize the fibril network microstructure of PM6 polymer to restrict the kinetic diffusion and aggregation of BTP‐4Cl molecules. According to the superior morphological stability, non‐radiative defect trapping coefficients can be drastically reduced without forming the long‐lived, trapped charge species in ternary blends. The results highlight the novel protective mechanisms of engineering the alloy‐like composites for reinforcing the long‐term stability of NFA‐based ternary OSCs.
  • Item
    No Preview Available
    Extracellular vesicular lipids as biomarkers for the diagnosis of Alzheimer’s disease
    Su, H ; Rustam, YH ; Masters, CL ; Makalic, E ; McLean, C ; Hill, AF ; Barnham, KJ ; Reid, GE ; Vella, LJ (Wiley, 2021-12-31)
    An increasing number of studies have revealed that dysregulated lipid homeostasis is associated with the pathological processes that lead to Alzheimer’s disease (AD). If changes in key lipid species could be detected in the periphery, it would advance our understanding of the disease and facilitate biomarker discovery. Global lipidomic profiling of sera/blood however has proved challenging with limited disease or tissue specificity. Small extracellular vesicles (EV) in the central nervous system, can pass the blood-brain barrier and enter the periphery, carrying a subset of lipids that could reflect lipid homeostasis in brain. This makes EVs uniquely suited for peripheral biomarker exploration.
  • Item
    Thumbnail Image
    Global double hybrids do not work for charge transfer: A comment on "Double hybrids and time-dependent density functional theory: An implementation and benchmark on charge transfer excited states"
    Casanova-Paez, M ; Goerigk, L (Wiley, 2021-03-30)
    We comment on the results published by Ottochian et al. in J. Comput Chem. 2020, 41, 1242. Therein, the authors claim that the second-order, perturbative correlation correction applied to the time-dependent version of the PBE-QIDH global double-hybrid functional approximation (DHDFA) enables the description of charge-transfer (CT) excitations. Herein, we point out some inadvertent oversights related to what had already been previously known and achieved in the field of time-dependent DHDFAs. Exemplified for the same four systems that Ottochian et al. have used to analyze intermolecular CT excitations, we show how a systematic and unacceptably large redshift in global DHDFAs is rectified when using the latest long-range corrected DHDFAs published earlier in J. Chem. Theory Comput. 2019, 15, 4735.