School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Competitive Triplet Formation and Recombination in Crystalline Films of Perylenediimide Derivatives: Implications for Singlet Fission
    Masoomi-Godarzi, S ; Hall, CR ; Zhang, B ; Gregory, MA ; White, JM ; Wong, WWH ; Ghiggino, KP ; Smith, TA ; Jones, DJ (AMER CHEMICAL SOC, 2020-05-28)
    Developing photostable compounds that undergo quantitative singlet fission (SF) is a key challenge. As SF necessitates electron transfer between neighboring molecules, the SF rate is highly sensitive to intermolecular coupling in the solid state. We investigate SF in thin films for a series of perylenediimide (PDI) molecules. By adding different substituents at the imide positions, the packing of the molecules in the solid state can be changed. The relationship between SF parameters and the stacked geometry in PDI films is investigated, with two-electron direct coupling found to be the main SF mechanism. Time-resolved emission and transient absorption data show that all of the PDI films undergo SF although with different rates and yields varying from 35 to 200%. The results show that PDI1 and 2, which are stacked PDI pairs twisted out of alignment along the highest occupied molecular orbital to lowest unoccupied molecular orbital transition, exhibit faster and more efficient SF up to 200% yield. We demonstrate that both triplet formation and decay rates are highly sensitive to the ordering of the molecules within a film. The results of this study will assist in the design of optimized structures with a fast SF rate and low recombination rate that are required for useful light harvesting applications.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    The role of conformational heterogeneity in the excited state dynamics of linked diketopyrrolopyrrole dimers†
    Bradley, SJ ; Chi, M ; White, JM ; Hall, CR ; Goerigk, L ; Smith, TA ; Ghiggino, KP (ROYAL SOC CHEMISTRY, 2021-04-21)
    Diketopyrrolopyrrole (DPP) derivatives have been proposed for both singlet fission and energy upconversion as they meet the energetic requirements and exhibit superior photostability compared to many other chromophores. In this study, both time-resolved electronic and IR spectroscopy have been applied to investigate excited state relaxation processes competing with fission in dimers of DPP derivatives with varying linker structures. A charge-separated (CS) state is shown to be an important intermediate with dynamics that are both solvent and linker dependent. The CS state is found for a subset of the total population of excited molecules and it is proposed that CS state formation requires suitably aligned dimers within a broader distribution of conformations available in solution. No long-lived triplet signatures indicative of singlet fission were detected, with the CS state likely acting as an alternative relaxation pathway for the excitation energy. This study provides insight into the role of molecular conformation in determining excited state relaxation pathways in DPP dimer systems.
  • Item
    Thumbnail Image
    Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide
    Banal, JL ; Soleimaninejad, H ; Jradi, FM ; Liu, M ; White, JM ; Blakers, AW ; Cooper, MW ; Jones, DJ ; Ghiggino, KP ; Marder, SR ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2016-06-23)
  • Item
    Thumbnail Image
    Highly Fluorescent Molecularly Insulated Perylene Diimides: Effect of Concentration on Photophysical Properties
    Zhang, B ; Soleimaninejad, H ; Jones, DJ ; White, JM ; Ghiggino, KP ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2017-10-10)
  • Item
    Thumbnail Image
    Exciton Dynamics of Photoexcited Pendant Porphyrin Polymers in Solution and in Thin Films
    Stevens, AL ; Novakovic, S ; White, JM ; Wong, WWH ; Smith, TA ; Ghiggino, KP ; Paige, MF ; Steer, RP (American Chemical Society, 2018-12-20)
    Several new polymers with rotatable zinc porphyrin pendants have been synthesized and their optical spectroscopic and photophysical properties, including upconversion efficiencies, determined in both fluid solution and thin films. Comparisons made with the β-substituted zinc tetraphenylporphyrin monomers and ZnTPP itself reveal that the yield of triplets resulting from either Q-band or Soret-band excitation of the polymers is surprisingly small. A detailed kinetic analysis of the fluorescence decays and transient triplet absorptions of the substituted monomers and their corresponding polymers reveals that this phenomenon is due to two parallel internal singlet quenching processes assigned to transient intrachain excimer formation. Consequently, the yields of upconverted S2 fluorescence resulting from Q-band excitation in the degassed polymers are significantly diminished in both fluid solution and thin films. Implications of these results for the design of polymer upconverting systems are discussed.