School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 41
  • Item
    No Preview Available
    Incorporating whey protein aggregates produced with heat and ultrasound treatment into rennet gels and model non-fat cheese systems
    Gamlath, CJ ; Leong, TSH ; Ashokkumar, M ; Martin, GJO (Elsevier, 2020-12-01)
    Native whey proteins (WP) are expulsed from cheese coagulation during syneresis. Although incorporating denatured WP aggregates into cheese gels has been previously proposed to improve the overall cheese yield, the effects of WP aggregate properties on gelation kinetics and protein retention are not yet fully understood. In this study, heat and power ultrasound were used to produce denatured whey protein aggregates with a wide range of sizes. The effects of size and hydrophobicity differences in WP aggregates produced by heat and heat coupled with ultrasound were investigated in relation to the kinetics of rennet gelation and protein retention in model non-fat cheddar cheeses. Rheological measurements showed that sufficiently large, denatured WP aggregates could avoid impairment of rennet gelation caused by native WP, irrespective of changes in the soluble calcium concentration or the surface hydrophobicity of the aggregates. WP aggregates formed by the combined heat and ultrasound treatment were more hydrophobic than the larger heat-treated aggregates and were better retained in the cheese. However, inclusion of sufficiently large aggregates in cheese milk conferred an openness to the cheese microstructure and showed promise in improving the otherwise rigid non-fat cheese.
  • Item
    Thumbnail Image
    A double co-sensitization strategy using heteroleptic transition metal ferrocenyl dithiocarbamate phenanthrolene-dione for enhancing the performance of N719-based DSSCs
    Singh, A ; Srivastava, D ; Gosavi, SW ; Chauhan, R ; Ashokkumar, M ; Albalwi, AN ; Muddassir, M ; Kumar, A (ROYAL SOC CHEMISTRY, 2022-09-28)
    Three new heteroleptic dithiocarbamate complexes with formula [M(Phen-dione)(Fcdtc)]PF6 (where M = Ni(ii) Ni-Fc, Cu(ii) Cu-Fc) and [Co(Phen-dione)(Fcdtc)2]PF6 (Co-Fc) (Fcdtc = N-ethanol-N-methylferrocene dithiocarbamate and Phen-dione = 1,10-phenanthroline-5,6-dione; PF6 - = hexafluorophosphate) were synthesized and characterized using microanalysis, FTIR, electronic absorption spectroscopy and mass spectrometry. The solution state electronic absorption spectroscopy for all three complexes displayed a band at ∼430 nm corresponding to the ferrocene unit and another low-intensity band in the visible region arising because of the d-d transitions. These newly synthesized complexes were used as co-sensitizers for the state-of-the-art di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(ii) (N719) dye in dye-sensitized solar cells (DSSCs). Among the three co-sensitizers/co-adsorbent-based DSSC set-ups, the assembly fabricated using Co-Fc/N719 displayed good photovoltaic performance with 5.31% efficiency (η) while a new triple component strategy inculcating N719, Co-Fc and Cu-Fc dyes offered the best photovoltaic performance with 6.05% efficiency (η) with incident photon to current conversion efficiency (IPCE) of 63%. This indicated an upliftment of the DSSC performance by ∼38% in comparison to the set-up constructed by employing only N719 dye (η = 4.39%) under similar experimental conditions.
  • Item
    Thumbnail Image
    Chemoenzymatic surface decoration of Nisin-shelled nanoemulsions: Novel targeted drug-nanocarriers for cancer applications
    Hashad, RA ; Singla, R ; Bhangu, SK ; Jap, E ; Zhu, H ; Peleg, AY ; Blakeway, L ; Hagemeyer, CE ; Cavalieri, F ; Ashokkumar, M ; Alt, K (ELSEVIER, 2022-11)
    Nisin, a peptide used as a natural food preservative, is employed in this work for the development of a novel nanocarrier system. Stable and uniform nisin-shelled nanoemulsions (NSNE) with a diameter of 100 ± 20 nm were successfully prepared using 20 kHz flow-through ultrasonication technique. The NSNE showed limited toxicity, high bactericidal activity and high drug loading capacity (EE 65 % w/w). In addition, the nisin shell was exploited for the site-specific attachment of a recombinantly produced cancer targeting ligand (αHER2LPETG IgG). Employing a unique two phases (bio-click) approach which involved both Sortase A mediated Azide Bioconjugation (SMAB) and Strain Promoted Azide Alkyne Cycloaddition (SPAAC) reactions, targeted NSNE (NSNEDOX-αHER2 IgG) were successfully assembled and loaded with the chemotherapeutic drug Doxorubicin (DOX). Finally, NSNEDOX-αHER2 IgG showed cancer-specific binding and augmented cytotoxicity to HER2 expressing tumour cells.
  • Item
    Thumbnail Image
    Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of quinoa protein isolate dispersions at acidic, neutral and alkaline pHs
    Luo, L ; Yang, Z ; Wang, H ; Ashokkumar, M ; Hemar, Y (ELSEVIER, 2022-12)
    Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.
  • Item
    No Preview Available
    Nanoarchitectonics of Congo red dye to biocompatible fluorescent carbon dots for highly sensitive Fe3+ and ferritin detection
    Kathiravan, A ; Thulasi, S ; Smith, TA ; Ashokkumar, M ; Jhonsi, MA (ROYAL SOC CHEMISTRY, 2022-12-20)
    In this work, we have meticulously tuned the carcinogenic Congo red dye to environmentally benign fluorescent carbon dots (CDs) by adopting a typical hydrothermal method without any additives. The as-synthesized CDs were extremely water soluble, exhibited an excitation wavelength independent emission with a high fluorescence quantum yield (46%) and were biocompatible. The microscopy results revealed that the CDs were quasi-spherical with a particle diameter of ∼5 nm. The structure and functional groups of the CDs were comprehensively investigated using Fourier-transform infrared, X-ray photoelectron and Raman spectroscopy analyses. These studies show that the CDs were intrinsically functionalized with -OH, N-H and CO groups. In the sensing experiments, the CDs selectively responded to Fe3+ ions over other analytes with a detection limit of 12 nM. The time-resolved fluorescence quenching measurements were used to decipher the sensing mechanism. For the onsite 'equipment-free' detection of iron, we have developed a CD adsorbed paper-based analytical tool. Furthermore, the selective nature of CDs was highly beneficial for detecting Fe3+ in non-heme metalloprotein (ferritin) and real water samples. Thus, the CDs produced from the Congo red dye could be a prospective asset to the bio-imaging and biosensing research fields.
  • Item
    No Preview Available
  • Item
    No Preview Available
    Turbulence-dependent reversible liquid-gel transition of micellar casein-stabilised emulsions
    Li, W ; Wu, Y ; Martin, GJO ; Ashokkumar, M (ELSEVIER SCI LTD, 2022-10)
  • Item
    No Preview Available
    High chain-end fidelity in sono-RAFT polymerization
    Padmakumar, AK ; Kumar, ARSS ; Allison-Logan, S ; Ashokkumar, M ; Singha, NK ; Qiao, GG (Royal Society of Chemistry, 2022-10-15)
    The chain-end fidelity of polymers synthesized via the sono-RAFT technique in an aqueous medium was investigated by performing chain extension studies and preparation of multi-block copolymers. Sono-RAFT polymerization of N,N-dimethylacrylamide (DMA), 2-hydroxyethyl acrylate (HEA) and N-acryloyl morpholine (NAM) exhibited higher conversion values, low dispersity and excellent chain-end fidelity. MALDI-TOF analysis indicated that the fraction of dead chains observed was almost negligible indicating high livingness of the polymer end groups. The sono-RAFT technique was compared to the photo-iniferter method by performing chain extension experiments. Polymers prepared via sono-RAFT were identical to those prepared via the photo-iniferter RAFT method in terms of livingness, and the polymer reached very high conversion within a fraction of the time compared to the latter method. An icosapenta block copolymer (25 blocks) was synthesized at room temperature within 46 h. The resulting block copolymer displayed a controlled molecular weight and a final dispersity of 1.39.
  • Item
    Thumbnail Image
    Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo-and electrocatalytic applications
    Theerthagiri, J ; Karuppasamy, K ; Lee, SJ ; Shwetharani, R ; Kim, H-S ; Pasha, SKK ; Ashokkumar, M ; Choi, MY (SPRINGERNATURE, 2022-08-10)
    The global energy crisis is increasing the demand for innovative materials with high purity and functionality for the development of clean energy production and storage. The development of novel photo- and electrocatalysts significantly depends on synthetic techniques that facilitate the production of tailored advanced nanomaterials. The emerging use of pulsed laser in liquid synthesis has attracted immense interest as an effective synthetic technology with several advantages over conventional chemical and physical synthetic routes, including the fine-tuning of size, composition, surface, and crystalline structures, and defect densities and is associated with the catalytic, electronic, thermal, optical, and mechanical properties of the produced nanomaterials. Herein, we present an overview of the fundamental understanding and importance of the pulsed laser process, namely various roles and mechanisms involved in the production of various types of nanomaterials, such as metal nanoparticles, oxides, non-oxides, and carbon-based materials. We mainly cover the advancement of photo- and electrocatalytic nanomaterials via pulsed laser-assisted technologies with detailed mechanistic insights and structural optimization along with effective catalytic performances in various energy and environmental remediation processes. Finally, the future directions and challenges of pulsed laser techniques are briefly underlined. This review can exert practical guidance for the future design and fabrication of innovative pulsed laser-induced nanomaterials with fascinating properties for advanced catalysis applications.
  • Item
    Thumbnail Image
    Ultrasonic Processing of Food Waste to Generate Value-Added Products
    Wu, Y ; Yao, S ; Narale, BA ; Shanmugam, A ; Mettu, S ; Ashokkumar, M (MDPI, 2022-07)
    Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.