School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Competitive Triplet Formation and Recombination in Crystalline Films of Perylenediimide Derivatives: Implications for Singlet Fission
    Masoomi-Godarzi, S ; Hall, CR ; Zhang, B ; Gregory, MA ; White, JM ; Wong, WWH ; Ghiggino, KP ; Smith, TA ; Jones, DJ (AMER CHEMICAL SOC, 2020-05-28)
    Developing photostable compounds that undergo quantitative singlet fission (SF) is a key challenge. As SF necessitates electron transfer between neighboring molecules, the SF rate is highly sensitive to intermolecular coupling in the solid state. We investigate SF in thin films for a series of perylenediimide (PDI) molecules. By adding different substituents at the imide positions, the packing of the molecules in the solid state can be changed. The relationship between SF parameters and the stacked geometry in PDI films is investigated, with two-electron direct coupling found to be the main SF mechanism. Time-resolved emission and transient absorption data show that all of the PDI films undergo SF although with different rates and yields varying from 35 to 200%. The results show that PDI1 and 2, which are stacked PDI pairs twisted out of alignment along the highest occupied molecular orbital to lowest unoccupied molecular orbital transition, exhibit faster and more efficient SF up to 200% yield. We demonstrate that both triplet formation and decay rates are highly sensitive to the ordering of the molecules within a film. The results of this study will assist in the design of optimized structures with a fast SF rate and low recombination rate that are required for useful light harvesting applications.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    Pyridine End-Capped Polymer to Stabilize Organic Nanoparticle Dispersions for Solar Cell Fabrication through Reversible Pyridinium Salt Formation
    Saxena, S ; Marlow, P ; Subbiah, J ; Colsmann, A ; Wong, WWH ; Jones, DJ (AMER CHEMICAL SOC, 2021-08-04)
    Bulk-heterojunction nanoparticle dispersions in water or alcohol can be employed as eco-friendly inks for the fabrication of organic solar cells by printing or coating. However, one major drawback is the need for stabilizing surfactants, which facilitate nanoparticle formation but later hamper device performance. When surfactant-free dispersions are formulated, a strong limitation is imposed by the dispersion concentration due to the tendency of nanoparticles to aggregate. In this work, pyridine end-capped poly(3-hexylthiophene) (P3HT-Py) is synthesized and included as an additive for the stabilization of P3HT:indene-C60 bis-adduct (ICBA) nanoparticle dispersions. In the presence of acetic acid (AcOH), a surface-active pyridinium acetate end-capped P3HT ion pair, P3HT-PyH+AcO-, is formed which effectively stabilizes the dispersion and hence allows the formation of dispersions with smaller nanoparticle sizes and higher concentrations of up to 30 mg/mL in methanol. The dispersions exhibit an enhanced shelf-lifetime of at least 60 days at room temperature. After the deposition of light-harvesting layers from the nanoparticle dispersions, the ion-pair formation is reversed at elevated temperatures leading to regeneration of P3HT-Py and AcOH. The AcOH evaporates from the active layer, while the performance of the corresponding solar cells is not affected by the residual P3HT-Py in the devices. Enhanced nanoparticle stability is achieved with only 0.017 wt % pyridine in the P3HT/ICBA formulation.
  • Item
    Thumbnail Image
    Theoretical Aspects of Iterative Coupling for Linear Oligomers and Polymers
    Neto, NS ; Jones, DJ ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2020-03)
    Abstract A conceptual study of iterative coupling (IC) is performed, providing a unified description and new research directions. IC chain growth rates and functional group choice are analyzed, guiding construction of efficient schemes. The concept of cycle efficiency is defined as a more complete metric of experimental implementations of IC, and then applied to the main linear and exponential IC processes. The mathematical relations between individual reactions, cycles, and the iterative process as a whole are studied. Finally, macromolecule IC is proposed as a strikingly complementary process to standard IC, with potential to reduce the dispersity of non‐uniform samples. Due to its connection with the central limit theorem of statistics, it provides an unusually robust, powerful, and general method for scalable production of polymer samples with narrow distribution. In all, this contribution assists development of improved IC processes targeting low dispersity linear oligomers and polymers.
  • Item
    Thumbnail Image
    Controlled synthesis of poly(3-hexylthiophene) in continuous flow
    Seyler, H ; Subbiah, J ; Jones, DJ ; Holmes, AB ; Wong, WWH (BEILSTEIN-INSTITUT, 2013-07-25)
    There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene), P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.
  • Item
    Thumbnail Image
    Bulk Heterojunction Nanomorphology of Fluorenyl Hexa-peri-hexabenzocoronene-Fullerene Blend Films
    Pfaff, M ; Mueller, P ; Bockstaller, P ; Mueller, E ; Subbiah, J ; Wong, WWH ; Klein, MFG ; Kiersnowski, A ; Puniredd, SR ; Pisula, W ; Colsmann, A ; Gerthsen, D ; Jones, DJ (AMER CHEMICAL SOC, 2013-11-27)
    In this study, the nanomorphology of fluorenyl hexa-peri-hexabenzocoronene:[6,6]-phenyl C61-butyric acid methyl ester (FHBC:PC61BM) absorber layers of organic solar cells was investigated. Different electron microscopical techniques, atomic force microscopy, and grazing incidence wide-angle X-ray scattering were applied for a comprehensive nanomorphology analysis. The development of the nanomorphology upon sample annealing and the associated change of the device performance were investigated. It was shown that the annealing process enhances the phase separation and therefore the bulk heterojunction structure. Due to π-π stacking, the FHBC molecules assemble into columnar stacks, which are already present before annealing. While the nonannealed sample consists of a mixture of homogeneously distributed PC61BM molecules and FHBC stacks with a preferential in-plane stack orientation, crystalline FHBC precipitates occur in the annealed samples. These crystals, which consist of hexagonal arranged FHBC stacks, grow with increased annealing time. They are distributed homogeneously over the whole volume of the absorber layer as revealed by electron tomography. The FHBC stacks, whether in the two phase mixture or in the pure crystalline precipitates, exhibit an edge-on orientation, according to results from grazing incidence wide-angle X-ray scattering (GIWAXS), dark-field transmission electron microscopy (DF TEM) imaging and selective area electron diffraction (SAED). The best solar cell efficiencies were obtained after 20 or 40 s sample annealing. These annealing times induce an optimized degree of phase separation between donor and acceptor material.
  • Item
    Thumbnail Image
    Benzotriazole-based donor-acceptor conjugated polymers with a broad absorption in the visible range
    Wong, WWH ; Subbiah, J ; Puniredd, SR ; Pisula, W ; Jones, DJ ; Holmes, AB (ROYAL SOC CHEMISTRY, 2014-02-21)
  • Item
    Thumbnail Image
    Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications
    Xiao, Z ; Subbiah, J ; Sun, K ; Ji, S ; Jones, DJ ; Holmes, AB ; Wong, WWH (Royal Society of Chemistry, 2014)
    Three new conjugated polymers based on 5-decylthiazol-2-yl substituted benzodithiophene have been synthesized by Stille cross-coupling polymerization. 1,3-Dibromo-5-octylthieno[3,4-c]pyrrole-4,6-dione (M1), 2,5-diethylhexyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione (M2) and 4,6-dibromo-thieno[3,4-b]thiophene-2-dodecyl carboxylate (M3) were used as acceptor building blocks for the synthesis of conjugated donor-acceptor polymers. The thermal, optical, electrochemical, and photovoltaic properties of the synthesized polymers were studied.
  • Item
    Thumbnail Image
    Single Isomer of Indene-C70 Bisadduct-Isolation and Performance in Bulk Heterojunction Solar Cells
    Wong, WWH ; Subbiah, J ; White, JM ; Seyler, H ; Zhang, B ; Jones, DJ ; Holmes, AB (AMER CHEMICAL SOC, 2014-02-25)