School of Chemistry - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores
    Zhang, B ; Gao, C ; Soleimaninejad, H ; White, JM ; Smith, TA ; Jones, DJ ; Ghiggino, KP ; Wong, WWH (AMER CHEMICAL SOC, 2019-04-23)
    Vertically aligning fluorophores to the surface of a waveguide is known to be an effective approach to improve the optical quantum efficiency (OQE) of luminescent solar concentrators (LSCs). While the chromophore alignment assists waveguiding of the emitted photons to the LSC edges, it also significantly reduces the light-harvesting properties of the LSC. We report here a fluorophore pair consisting of a sphere-shaped energy donor and a rod-shaped emitter that was incorporated in LSCs to provide selective fluorophore alignment to address the reduced incident-light absorption issue. A liquid-crystal polymer matrix was used to perpendicularly align the rod-shaped acceptors to a favorable orientation for light guiding, while the sphere-shaped donor was randomly oriented to maintain its light-absorbing properties. The OQE of LSC devices with this selectively aligned donor-acceptor fluorophore system is 78% without significant loss of light-harvesting capability.
  • Item
    Thumbnail Image
    Competitive Triplet Formation and Recombination in Crystalline Films of Perylenediimide Derivatives: Implications for Singlet Fission
    Masoomi-Godarzi, S ; Hall, CR ; Zhang, B ; Gregory, MA ; White, JM ; Wong, WWH ; Ghiggino, KP ; Smith, TA ; Jones, DJ (AMER CHEMICAL SOC, 2020-05-28)
    Developing photostable compounds that undergo quantitative singlet fission (SF) is a key challenge. As SF necessitates electron transfer between neighboring molecules, the SF rate is highly sensitive to intermolecular coupling in the solid state. We investigate SF in thin films for a series of perylenediimide (PDI) molecules. By adding different substituents at the imide positions, the packing of the molecules in the solid state can be changed. The relationship between SF parameters and the stacked geometry in PDI films is investigated, with two-electron direct coupling found to be the main SF mechanism. Time-resolved emission and transient absorption data show that all of the PDI films undergo SF although with different rates and yields varying from 35 to 200%. The results show that PDI1 and 2, which are stacked PDI pairs twisted out of alignment along the highest occupied molecular orbital to lowest unoccupied molecular orbital transition, exhibit faster and more efficient SF up to 200% yield. We demonstrate that both triplet formation and decay rates are highly sensitive to the ordering of the molecules within a film. The results of this study will assist in the design of optimized structures with a fast SF rate and low recombination rate that are required for useful light harvesting applications.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    Medium effects on the fluorescence of Imide-substituted naphthalene diimides
    Pervin, R ; Manian, A ; Chen, Z ; Christofferson, AJ ; Owyong, TC ; Bradley, SJ ; White, JM ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Elsevier, 2023-03-01)
    Naphthalene diimides (NDIs) are a common class of chromophores used in photon harvesting applications due to their functional malleability through substitution of the NDI core. However, some derivatives with substitution at the imide position of the NDI core only become emissive in electron-rich aromatic solvents. This study examines this phenomenon from both an experimental and theoretical perspective, in order to understand how NDIs interact with each other and the surrounding medium upon photoexcitation. We report the photophysical properties of cyclohexyl and several aromatic imide-substituted NDI derivatives, and show that fluorescence properties are strongly influenced by solvation in more electron-rich aromatic solvents (e.g. toluene, xylene, mesitylene). Theoretical modeling supports strong interactions, including ground state charge-transfer complexation, with aromatic solvents. In solid poly(methyl methacrylate) (PMMA) and poly(styrene) (PS) film media, both aggregation and complexation are shown to contribute to absorption and emission properties. The results also demonstrate that aromatic imide substituents not only act to provide steric bulk to the NDI chromophore but participate in interactions with the surrounding medium that affect the overall photophysical properties.
  • Item
    Thumbnail Image
    Limitations of conjugated polymers as emitters in triplet-triplet annihilation upconversion
    O'shea, R ; Gao, C ; Bradley, S ; Owyong, TC ; Wu, N ; White, JM ; Ghiggino, KP ; Wong, WWH (ROYAL SOC CHEMISTRY, 2021-11-29)
    Triplet–triplet annihilation upconversion performances for poly(phenylene-vinylene) emitters were investigated through a series of copolymers with bulky sidechains.
  • Item
    Thumbnail Image
    Revealing the influence of steric bulk on the triplet-triplet annihilation upconversion performance of conjugated polymers
    O'shea, R ; Kendrick, WJ ; Gao, C ; Owyong, TC ; White, JM ; Ghiggino, KP ; Wong, WWH (NATURE PORTFOLIO, 2021-10-01)
    A series of poly(phenylene-vinylene)-based copolymers are synthesized using the Gilch method incorporating monomers with sterically bulky sidechains. The photochemical upconversion performance of these polymers as emitters are investigated using a palladium tetraphenyltetrabenzoporphyrin triplet sensitizer and MEH-PPV as reference. Increased incorporation of sterically bulky monomers leads to a reduction in the upconversion efficiency despite improved photoluminescence quantum yield. A phosphorescence quenching study indicates issues with the energy transfer process between the triplet sensitizer and the copolymers. The best performance with 0.18% upconversion quantum yield is obtained for the copolymer containing 10% monomer with bulky sidechains.
  • Item
    Thumbnail Image
    Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle
    Banal, JL ; White, JM ; Ghiggino, KP ; Wong, WWH (NATURE PORTFOLIO, 2014-04-10)
    The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes--coumarin, perylenes, and rhodamines--used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes.
  • Item
    Thumbnail Image
    A Transparent Planar Concentrator Using Aggregates of gem-Pyrene Ethenes
    Banal, JL ; White, JM ; Lam, TW ; Blakers, AW ; Ghiggino, KP ; Wong, WWH (WILEY-V C H VERLAG GMBH, 2015-10-07)
    The luminescence properties of pyrene ethenes, both as monomer and aggregate species, are found to depend on the regioisomer structure. Systematic shifts in absorption, emission, and excitation spectra of the gem‐pyrene ethenes, both in solution and in rigid polymer hosts, are consistent with weakly interacting H‐aggregate formation. This aggregation leads to excimer‐like emission with Stokes shifts greater than 1 eV. Planar concentrators fabricated from gem‐pyrene diphenylethenes show comparable performance to previously reported inorganic phosphors. The UV absorption and emission properties of the planar concentrator devices exhibit potential for transparent solar concentrators or visible–blind photodetector applications. This is the first demonstration of exploiting the unusual photophysics of molecular aggregates in planar concentrators.
  • Item
    Thumbnail Image
    Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide
    Banal, JL ; Soleimaninejad, H ; Jradi, FM ; Liu, M ; White, JM ; Blakers, AW ; Cooper, MW ; Jones, DJ ; Ghiggino, KP ; Marder, SR ; Smith, TA ; Wong, WWH (AMER CHEMICAL SOC, 2016-06-23)
  • Item
    Thumbnail Image
    Determinants of the efficiency of photon upconversion by triplet-triplet annihilation in the solid state: zinc porphyrin derivatives in PVA
    Rautela, R ; Joshi, NK ; Novakovic, S ; Wong, WWH ; White, JM ; Ghiggino, KP ; Paige, MF ; Steer, RP (ROYAL SOC CHEMISTRY, 2017-09-14)
    Spectroscopic, photophysical and computational studies designed to expose and explain the differences in the efficiencies of non-coherent photon upconversion (NCPU) by triplet-triplet annihilation (TTA) have been carried out for a new series of alkyl-substituted diphenyl and tetraphenyl zinc porphyrins, both in fluid solution and in solid films. Systematic variations in the alkyl-substitution of the phenyl groups in both the di- and tetraphenyl porphyrins introduces small, but well-understood changes in their spectroscopic and photophysical properties and in their TTA efficiencies. In degassed toluene solution TTA occurs for all derivatives and produces the fluorescent S2 product states in all cases. In PVA matrices, however, none of the di-phenylporphyrins exhibit measurable NCPU whereas all the tetraphenyl-substituted compounds remain upconversion-active. In PVA the NCPU efficiencies of the zinc tetraphenylporphyrins vary significantly with their steric characteristics; the most sterically crowded tetraphenyl derivative exhibits the greatest efficiency. DFT-D computations have been undertaken and help reveal the sources of these differences.